全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于证据推理和置信规则库的混凝土抗压强度预测方法
Concrete Compressive Strength Prediction Method Based on Evidential Reasoning and Belief Rule Base

DOI: 10.12677/airr.2024.134083, PP. 803-813

Keywords: 置信规则库,证据推理,混凝土抗压强度,随机森林,投影协方差矩阵自适应进化策略
Belief Rule Base
, Evidential Reasoning, Concrete Compressive Strength, Random Forest Algorithm, Projected Covariance Matrix Adaptive Evolutionary Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

混凝土抗压强度的高低直接影响着建筑物的安全和稳定性,传统的混凝土抗压预测方式周期长且成本高。针对解决混凝土抗压强度分析所面临的材料成分、分析过程复杂等问题,提出了一种基于证据推理(Evidential Reasoning, ER)和置信规则库(Belief Rule Base)的混凝土抗压强度预测方法。该方法首先利用随机森林(RF)算法得出部分指标的重要度,利用证据推理算法赋权融合各项指标。其次利用置信规则库专家系统将混凝土抗压指标中定性知识与定量的数据相结合,建立置信规则库预测模型。然后采用投影协方差矩阵自适应进化策略算法(P-CMA-ES)优化模型的参数。最后通过UCI数据库混凝土抗压强度数据集,对提出的方法进行了验证。实验结果表明,该方法保证了模型推理的透明,本文提出的预测方法具有较高的精度且具有一定的可解释性。
The compressive strength of concrete directly affects the safety and stability of buildings, and the traditional concrete compressive strength prediction method has a long period and high cost. In order to solve the problems of material composition and complex analysis process faced by concrete compressive strength analysis, a concrete compressive strength prediction method based on Evidential Reasoning (ER) and Belief Rule Base was proposed. Firstly, the random forest (RF) algorithm is used to obtain the importance of some indicators, and the evidence inference algorithm is used to empower and fuse various indicators. Secondly, the confidence rule base expert system is used to combine the qualitative knowledge and quantitative data in the concrete compressive index, and the confidence rule base prediction model is established. Then, the projection covariance matrix adaptive evolution strategy algorithm (P-CMA-ES) was used to optimize the parameters of the model. Finally, the proposed method is verified by the concrete compressive strength dataset of the UCI database. Experimental results show that the proposed method ensures the transparency of model reasoning, and the prediction method proposed in this paper has high accuracy and interpretability.

References

[1]  陈洪根, 龙蔚莹, 李昕, 等. 基于BP神经网络的粉煤灰混凝土抗压强度预测研究[J]. 建筑结构, 2021, 51(S2): 1041-1045.
[2]  韩建军, 赵道松, 李建平. 基于BP神经网络的垃圾飞灰混凝土抗压强度预测模型[J]. 混凝土, 2022(9): 78-81.
[3]  曹斐, 周彧, 王春晓, 等. 一种改进的支持向量回归的混凝土强度预测方法[J]. 硅酸盐通报, 2021, 40(1): 90-97.
[4]  Chen, Y., Yang, J., Xu, D. and Yang, S. (2013) On the Inference and Approximation Properties of Belief Rule Based Systems. Information Sciences, 234, 121-135.
https://doi.org/10.1016/j.ins.2013.01.022
[5]  Yang, J.B., Liu, J., Wang, J., et al. (2006) Belief Rule-Base Inference Methodology Using the Evidential Reasoning Approach-RIMER. IEEE Transactions on Systems, Man & Cybernetics (S2168-2267): Part A, 36, 266-285.
[6]  Yang, J. and Xu, D. (2013) Evidential Reasoning Rule for Evidence Combination. Artificial Intelligence, 205, 1-29.
https://doi.org/10.1016/j.artint.2013.09.003
[7]  Dong, X.H., Zhou, Z.Z., Hu, C.H., et al. (2021) Performance Evalution Method of Inertial System-Based on Hierarchical Belief Rule Base. Acta Aeronautica et Astronautica Sinica, 42, Article 324456.
[8]  Han, P., Zhao, B., He, W., Kong, L., Li, Y., Zhou, G., et al. (2023) An Interpretable BRB Model with Interval Optimization Strategy for Lithium Battery Capacity Prediction. Energy Science & Engineering, 11, 1945-1959.
https://doi.org/10.1002/ese3.14ss28
[9]  Yin, X., Zhang, X., Li, H., Chen, Y. and He, W. (2023) An Interpretable Model for Stock Price Movement Prediction Based on the Hierarchical Belief Rule Base. Heliyon, 9, e16589.
https://doi.org/10.1016/j.heliyon.2023.e16589
[10]  Kong, G., Xu, D., Yang, J., Yin, X., Wang, T., Jiang, B., et al. (2016) Belief Rule-Based Inference for Predicting Trauma Outcome. Knowledge-Based Systems, 95, 35-44.
https://doi.org/10.1016/j.knosys.2015.12.002
[11]  He, W., Qiao, P., Zhou, Z., Hu, G., Feng, Z. and Wei, H. (2018) A New Belief-Rule-Based Method for Fault Diagnosis of Wireless Sensor Network. IEEE Access, 6, 9404-9419.
https://doi.org/10.1109/access.2018.2808605
[12]  Sönmez, M., Holt, G.D., Yang, J.B. and Graham, G. (2002) Applying Evidential Reasoning to Prequalifying Construction Contractors. Journal of Management in Engineering, 18, 111-119.
https://doi.org/10.1061/(asce)0742-597x(2002)18:3(111)
[13]  Athey, S., Tibshirani, J. and Wager, S. (2019) Generalized Random Forests. The Annals of Statistics, 47, 1148-1178.
https://doi.org/10.1214/18-aos1709
[14]  Yang, J.B., Liu, J., Wang, J., et al. (2006) Belief Rule-Base Inference Methodology Using the Evidential Reasoning Approach-Rimer. IEEE Transactions on Systems, Man, and CyberneticsPart A: Systems and Humans, 36, 266-285.
https://doi.org/10.1109/tsmca.2005.851270
[15]  蒋泽中. 高性能混凝土性能及抗裂细观机理研究[D]: [博士学位论文]. 成都: 西南交通大学, 2015.
[16]  董方圆, 郑山锁, 宋明辰, 等. 高性能混凝土研究进展Ⅱ: 耐久性能及寿命预测模型[J]. 材料导报, 2018, 32(3): 496-502+509.
[17]  He, W., Hu, G., Zhou, Z., Qiao, P., Han, X., Qu, Y., et al. (2018) A New Hierarchical Belief-Rule-Based Method for Reliability Evaluation of Wireless Sensor Network. Microelectronics Reliability, 87, 33-51.
https://doi.org/10.1016/j.microrel.2018.05.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133