全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于社交媒体文本的AI自动化人格识别研究
AI-Powered Personality Recognition Based on Social Media Text

DOI: 10.12677/airr.2024.134081, PP. 788-794

Keywords: 人格识别,社交媒体,人工智能,特征提取,模型预测
Personality Recognition
, Social Media, Artificial Intelligence, Feature Extraction, Model Prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

人格是与人类思维、情感和行为相关的稳定模式,能够有效帮助我们理解、分析和预测人类行为,被广泛应用于人机交互、推荐系统和网络安全等领域。社交媒体为人格识别研究提供了丰富的数据来源,推动了自动人格识别的发展。然而,现有文献在特征提取与模型预测研究方面,尤其是多样化组合方式的讨论上仍显不足。且人工智能在该领域的应用尚处于发展阶段,亟需进一步探索。因此,本研究综述了面向社交媒体文本的人格识别研究,针对不同任务需求和数据特征,对人格识别模型的组合进行了梳理和总结,涵盖基于语言和统计特征、预训练语言模型特征,以及机器学习、深度学习和集成学习等方法。通过比较分析,研究旨在为从文本数据中推断人格特质提供更有效的方法和策略,推动其在实际应用中的发展。同时,探讨了新兴AI技术在人格识别中的潜力,指出了该领域的研究不足并展望未来方向。
Personality, a stable pattern of thoughts, emotions, and behaviors, plays a crucial role in predicting human behavior. Its recognition has broad applications in fields like human-computer interaction and cybersecurity. Social media, with abundant user-generated data, drives automated personality recognition; However, comprehensive studies on feature extraction and model prediction, especially those exploring diverse methodological approaches, remain limited. While AI shows great promise in advancing personality recognition, its application is still in the early stages and requires further investigation. This study reviews existing research on personality recognition from social media texts, focusing on strategies involving language features, pre-trained models, and various machine learning techniques. It aims to improve personality prediction, identify research gaps, and explore future AI-driven developments in the field.

References

[1]  林浩, 王春东, 孙永杰. 面向社交媒体数据的人格识别研究进展[J]. 计算机科学与探索, 2023, 17(5): 1002-1016.
[2]  Majumder, N., Poria, S., Gelbukh, A. and Cambria, E. (2017) Deep Learning-Based Document Modeling for Personality Detection from Text. IEEE Intelligent Systems, 32, 74-79.
https://doi.org/10.1109/mis.2017.23
[3]  Kazameini, A., Fatehi, S., Mehta, Y., Eetemadi, S. and Cambria, E. (2020) Personality Trait Detection Using Bagged SVM over BERT Word Embedding Ensembles. arXiv: 2010.01309.
[4]  Li, Y., Kazemeini, A., Mehta, Y. and Cambria, E. (2022) Multitask Learning for Emotion and Personality Traits Detection. Neurocomputing, 493, 340-350.
https://doi.org/10.1016/j.neucom.2022.04.049
[5]  Argamon, S., Dhawle, S., Koppel, M. and Pennebaker, J.W. (2005) Lexical Predictors of Personality Type. Proceedings of Joint Annual Meeting of the Interface and the Classification Society of North America, St Louis, 8-12 June 2005, 1-16.
[6]  Mairesse, F., Walker, M.A., Mehl, M.R. and Moore, R.K. (2007) Using Linguistic Cues for the Automatic Recognition of Personality in Conversation and Text. Journal of Artificial Intelligence Research, 30, 457-500.
https://doi.org/10.1613/jair.2349
[7]  Poria, S., Gelbukh, A., Agarwal, B., Cambria, E. and Howard, N. (2013) Common Sense Knowledge Based Personality Recognition from Text. Advances in Soft Computing and Its Applications, Mexico City, 24-30 November 2013, 484-496.
https://doi.org/10.1007/978-3-642-45111-9_42
[8]  Golbeck, J., Robles, C., Edmondson, M. and Turner, K. (2011) Predicting Personality from Twitter. 2011 IEEE Third Int’l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l Conference on Social Computing, Boston, 9-11 October 2011, 149-156.
https://doi.org/10.1109/passat/socialcom.2011.33
[9]  Choong, E.J. and Varathan, K.D. (2021) Predicting Judging-Perceiving of Myers-Briggs Type Indicator (MBTI) in Online Social Forum. PeerJ, 9, e11382.
https://doi.org/10.7717/peerj.11382
[10]  Kumar, S., West, R. and Leskovec, J. (2016) Disinformation on the Web: Impact, Characteristics, and Detection of Wikipedia Hoaxes. Proceedings of the 25th International Conference on World Wide Web, Montréal Québec, 1-15 April 1 2016, 591-602.
https://doi.org/10.1145/2872427.2883085
[11]  Mehta, Y., Fatehi, S., Kazameini, A., Stachl, C., Cambria, E. and Eetemadi, S. (2020) Bottom-up and Top-Down: Predicting Personality with Psycholinguistic and Language Model Features. 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, 17-20 November 2020, 1184-1189.
https://doi.org/10.1109/icdm50108.2020.00146
[12]  El-Demerdash, K., El-Khoribi, R.A., Ismail Shoman, M.A. and Abdou, S. (2022) Deep Learning Based Fusion Strategies for Personality Prediction. Egyptian Informatics Journal, 23, 47-53.
https://doi.org/10.1016/j.eij.2021.05.004
[13]  Christian, H., Suhartono, D., Chowanda, A. and Zamli, K.Z. (2021) Text Based Personality Prediction from Multiple Social Media Data Sources Using Pre-Trained Language Model and Model Averaging. Journal of Big Data, 8, Article No. 68.
https://doi.org/10.1186/s40537-021-00459-1
[14]  Ren, Z., Shen, Q., Diao, X. and Xu, H. (2021) A Sentiment-Aware Deep Learning Approach for Personality Detection from Text. Information Processing & Management, 58, Article 102532.
https://doi.org/10.1016/j.ipm.2021.102532
[15]  López Pabón, F.O. and Orozco Arroyave, J.R. (2021) Automatic Personality Evaluation from Transliterations of Youtube Vlogs Using Classical and State of the Art Word Embeddings. Ingeniería e Investigación, 42, e93803.
https://doi.org/10.15446/ing.investig.93803
[16]  Ryan, G., Katarina, P. and Suhartono, D. (2023) MBTI Personality Prediction Using Machine Learning and SMOTE for Balancing Data Based on Statement Sentences. Information, 14, Article 217.
https://doi.org/10.3390/info14040217
[17]  Yuan, C., Wu, J., Li, H. and Wang, L. (2018) Personality Recognition Based on User Generated Content. 2018 15th International Conference on Service Systems and Service Management (ICSSSM), Hangzhou, 21-22 July 2018, 1-6.
https://doi.org/10.1109/icsssm.2018.8465006
[18]  Sujatha, N., Pramod, S., Bhatla, S., Thulasimani, T., Kant, R. and Chauhan, A. (2023) Efficient Method for Personality Prediction Using Hybrid Method of Convolutional Neural Network and LSTM. 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, 6-8 July 2023, 959-964.
https://doi.org/10.1109/icesc57686.2023.10193058
[19]  Lynn, V., Balasubramanian, N. and Schwartz, H.A. (2020) Hierarchical Modeling for User Personality Prediction: The Role of Message-Level Attention. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5-10 July 2020, 5306-5316.
https://doi.org/10.18653/v1/2020.acl-main.472
[20]  Wang, X., Sui, Y., Zheng, K., Shi, Y. and Cao, S. (2021) Personality Classification of Social Users Based on Feature Fusion. Sensors, 21, Article 6758.
https://doi.org/10.3390/s21206758
[21]  Ramezani, M., Feizi-Derakhshi, M., Balafar, M., Asgari-Chenaghlu, M., Feizi-Derakhshi, A., Nikzad-Khasmakhi, N., et al. (2022) Automatic Personality Prediction: An Enhanced Method Using Ensemble Modeling. Neural Computing and Applications, 34, 18369-18389.
https://doi.org/10.1007/s00521-022-07444-6
[22]  Fernández-Pichel, M., Aragón, M.E., Saborido-Patiño, J. and Losada, D.E. (2023) Personality Trait Analysis during the COVID-19 Pandemic: A Comparative Study on Social Media. Journal of Intelligent Information Systems, 62, 117-142.
https://doi.org/10.1007/s10844-023-00810-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133