全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Photocatalytic Decoloration of Methyl Orange by TiO2 in Slurry

DOI: 10.4236/ajac.2024.1511022, PP. 347-356

Keywords: Depollution, Methyl Orange, TiO2, Slurry

Full-Text   Cite this paper   Add to My Lib

Abstract:

The problem of water depollution is gaining importance, especially as regulatory standards concerning drinking water are increasingly strict. The different industries (textile industries) generate chemically stable pollutants such as methyl orange which make their degradation difficult. It is therefore necessary to find new, more effective techniques for the treatment of these discharges. Among the different solutions proposed to deal with this problem, we find advanced oxidation processes (POAs) which are clean and promising technologies in the field of wastewater depollution. In this regard, heterogeneous photocatalysis was used in an aqueous suspension of titanium oxide (TiO2) using a ultraviolet (UV) lamp as artificial radiation. The objective of this work is to study the influence of some operating parameters such as: the catalyst mass, the initial pollutant concentration, the volume of the solution and the pH of the solution, were examined. The results obtained showed that this photocatalyst made it possible to degrade 99.85% of the initial concentration of methyl orange (10 ppm), after 240 min of irradiation with an optimal mass of 0.50 g of TiO2 for a volume of 200 mL of methyl orange solution at pH = 3.0.

References

[1]  El-Mekkawi, D.M., Abdelwahab, N.A., Mohamed, W.A.A., Taha, N.A. and Abdel-Mottaleb, M.S.A. (2020) Solar Photocatalytic Treatment of Industrial Wastewater Utilizing Recycled Polymeric Disposals as TiO2 Supports. Journal of Cleaner Production, 249, Article ID: 119430.
https://doi.org/10.1016/j.jclepro.2019.119430
[2]  Perrich, J.R. (2018) Activated Carbon Adsorption for Wastewater Treatment. CRC Press.
[3]  Gandini, D., Comninellis, C., Tahar, N.B. and Savall, A. (1998) Électrodépollution: Traitement électrochimique des eaux résiduaires chargées en matières organiques toxiques. Actualité Chimique, 10, 68-73.
[4]  Kouamé, N.A., Robert, D., Keller, V., Keller, N., Pham, C. and Nguyen, P. (2012) TiO2/β-sic Foam-Structured Photoreactor for Continuous Wastewater Treatment. Environmental Science and Pollution Research, 19, 3727-3734.
https://doi.org/10.1007/s11356-011-0719-6
[5]  Zhang, T., Liu, Y., Rao, Y., Li, X., Yuan, D., Tang, S., et al. (2020) Enhanced Photocatalytic Activity of TiO2 with Acetylene Black and Persulfate for Degradation of Tetracycline Hydrochloride under Visible Light. Chemical Engineering Journal, 384, Article ID: 123350.
https://doi.org/10.1016/j.cej.2019.123350
[6]  Zazou, H. (2015) Dégradation de pesticides dans l’eau par les procédés d’oxydation avancée (POA). Paris Est.
[7]  Deng, Y. and Zhao, R. (2015) Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports, 1, 167-176.
https://doi.org/10.1007/s40726-015-0015-z
[8]  Wang, T., Wang, Y., Liao, C., Cai, Y. and Jiang, G. (2009) Perspectives on the Inclusion of Perfluorooctane Sulfonate into the Stockholm Convention on Persistent Organic Pollutants. Environmental Science & Technology, 43, 5171-5175.
https://doi.org/10.1021/es900464a
[9]  Asghar, A., Abdul Raman, A.A. and Wan Daud, W.M.A. (2015) Advanced Oxidation Processes for In-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Textile Wastewater Treatment: A Review. Journal of Cleaner Production, 87, 826-838.
https://doi.org/10.1016/j.jclepro.2014.09.010
[10]  Ismail, L., Rifai, A., Ferronato, C., Fine, L., Jaber, F. and Chovelon, J. (2016) Towards a Better Understanding of the Reactive Species Involved in the Photocatalytic Degradation of Sulfaclozine. Applied Catalysis B: Environmental, 185, 88-99.
https://doi.org/10.1016/j.apcatb.2015.12.008
[11]  Ibhadon, A. and Fitzpatrick, P. (2013) Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts, 3, 189-218.
https://doi.org/10.3390/catal3010189
[12]  Christian M’Bra, I., Keller, N., Trokourey, A. and Robert, D. (2023) Photocatalytic Efficiency of Suspended and Immobilized TiO2 P25 for Removing Myclobutanil, Penconazole and Their Commercial Formulations. Photocatalysis: Research and Potential, 1, 1-10.
https://doi.org/10.35534/prp.2023.10004
[13]  Armaković, S.J., Uzelac, M.M. and Armaković, S. (2021) Application of TiO2 Nanomaterials for Water Purification Based on Photocatalysis. Book of Abstracts, 7.
[14]  Ramutshatsha-Makhwedzha, D., Mavhungu, A., Moropeng, M.L. and Mbaya, R. (2022) Activated Carbon Derived from Waste Orange and Lemon Peels for the Adsorption of Methyl Orange and Methylene Blue Dyes from Wastewater. Heliyon, 8, e09930.
https://doi.org/10.1016/j.heliyon.2022.e09930
[15]  Gong, B., Wu, P., Yang, J., Peng, X., Deng, H. and Yin, G. (2021) Electrochemical and Photocatalytic Properties of Ru-Doped TiO2 Nanostructures for Degradation of Methyl Orange Dye. International Journal of Electrochemical Science, 16, Article ID: 21023.
https://doi.org/10.20964/2021.02.18
[16]  Oladipo, G.O., Akinlabi, A.K., Alayande, S.O., Msagati, T.A.M., Nyoni, H.H. and Ogunyinka, O.O. (2019) Synthesis, Characterization, and Photocatalytic Activity of Silver and Zinc Co-Doped TiO2 Nanoparticle for Photodegradation of Methyl Orange Dye in Aqueous Solution. Canadian Journal of Chemistry, 97, 642-650.
https://doi.org/10.1139/cjc-2018-0308
[17]  Daneshvar, N., Rasoulifard, M.H., Khataee, A.R. and Hosseinzadeh, F. (2007) Removal of C.I. Acid Orange 7 from Aqueous Solution by UV Irradiation in the Presence of ZnO Nanopowder. Journal of Hazardous Materials, 143, 95-101.
https://doi.org/10.1016/j.jhazmat.2006.08.072
[18]  Guettaï, N. and Ait Amar, H. (2005) Photocatalytic Oxidation of Methyl Orange in Presence of Titanium Dioxide in Aqueous Suspension. Part I: Parametric Study. Desalination, 185, 427-437.
https://doi.org/10.1016/j.desal.2005.04.048
[19]  Barka, N., Assabbane, A., Nounah, A., Albourine, A. and Ait-Ichou, Y. (2008) Dégradation Photocatalytique de Deux Colorants Séparés et en Mélange Binaire par TiO2-Supporté. Sciences & Technologie A, No. 7, 9-16.
[20]  Al-Qaradawi, S. and Salman, S.R. (2002) Photocatalytic Degradation of Methyl Orange as a Model Compound. Journal of Photochemistry and Photobiology A: Chemistry, 148, 161-168.
https://doi.org/10.1016/s1010-6030(02)00086-2
[21]  M’Bra, I.C., Robert, D., Keller, N., Drogui, P. and Trokourey, A. (2020) Photocatalytic Degradation of Myclobutanil and Its Commercial Formulation with TiO2 P25 in Slurry and TiO2/β-Sic Foams. Journal of Nanoscience and Nanotechnology, 20, 5938-5943.
https://doi.org/10.1166/jnn.2020.18547
[22]  Zahedi, F., Behpour, M., Ghoreishi, S.M. and Khalilian, H. (2015) Photocatalytic Degradation of Paraquat Herbicide in the Presence TiO2 Nanostructure Thin Films under Visible and Sun Light Irradiation Using Continuous Flow Photoreactor. Solar Energy, 120, 287-295.
https://doi.org/10.1016/j.solener.2015.07.010
[23]  Bouanimba, N., Laid, N., Zouaghi, R. and Sehili, T. (2015) Effect of Ph and Inorganic Salts on the Photocatalytic Decolorization of Methyl Orange in the Presence of TiO2 P25 and PC500. Desalination and Water Treatment, 53, 951-963.
https://doi.org/10.1080/19443994.2013.848667
[24]  Yang, H., Zhang, K., Shi, R., Li, X., Dong, X. and Yu, Y. (2006) Sol-Gel Synthesis of TiO2 Nanoparticles and Photocatalytic Degradation of Methyl Orange in Aqueous TiO2 Suspensions. Journal of Alloys and Compounds, 413, 302-306.
https://doi.org/10.1016/j.jallcom.2005.06.061

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133