Throat Lozenges and Spray Containing Chlorhexidine and Lidocaine Fixed Combination Show Virucidal Activity against Respiratory Syncytial Virus and SARS-CoV-2
The limitations of existing treatments for both Respiratory Syncytial Virus (RSV) and Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) lie in their inability to provide universally accessible, easy-to-use, and effective solutions. A commercially available fixed combination of chlorhexidine and lidocaine in both, lozenge and spray form, were assessed for their antiviral efficacy against RSV and SARS-CoV-2 in a suspension test, the viral titres were measured by standard TCID50. Both formulations were able to reduce the RSV titre to undetectable levels (99.9% virus inactivation, 3 log10 reduction) in less than 1 minute. The lozenge formulation inactivated the viral activity of SARS-CoV-2 in 5 minutes (99% virus inactivation, 2 log10 reduction), while the spray formulation led to a reduction of SARS-CoV-2 titre to undetectable levels in less than 1 minute (99.9%, 3 log10 reduction). In conclusion, our results show that preparations combining chlorhexidine and lidocaine significantly reduce certain respiratory viruses in vitro. In this regard, physiological effects of these preparations become more obvious potentially affecting viral transmission to other individuals and spreading to the lower respiratory tract—thereby shortening the duration and severity of symptoms.
References
[1]
Leung, N.H.L. (2021) Transmissibility and Transmission of Respiratory Viruses. Nature Reviews Microbiology, 19, 528-545. https://doi.org/10.1038/s41579-021-00535-6
[2]
Klompas, M., Milton, D.K., Rhee, C., Baker, M.A. and Leekha, S. (2021) Current Insights into Respiratory Virus Transmission and Potential Implications for Infection Control Programs: A Narrative Review. Annals of Internal Medicine, 174, 1710-1718. https://doi.org/10.7326/m21-2780
[3]
Gralton, J., Tovey, E.R., McLaws, M. and Rawlinson, W.D. (2013) Respiratory Virus RNA Is Detectable in Airborne and Droplet Particles. Journal of Medical Virology, 85, 2151-2159. https://doi.org/10.1002/jmv.23698
[4]
Tellier, R. (2022) COVID-19: The Case for Aerosol Transmission. Interface Focus, 12, Article ID: 20210072. https://doi.org/10.1098/rsfs.2021.0072
[5]
von Linstow, M.L., Eugen-Olsen, J., Koch, A., Winther, T.N., Westh, H. and Hogh, B. (2006) Excretion Patterns of Human Metapneumovirus and Respiratory Syncytial Virus among Young Children. European Journal of Medical Research, 11, 329-335.
[6]
Ebrahimi, T., Shamshiri, A.R., Alebouyeh, M. and Mohebbi, S.Z. (2023) Effectiveness of Mouthwashes on Reducing SARS-CoV-2 Viral Load in Oral Cavity: A Systematic Review and Meta-analysis. BMC Oral Health, 23, Article No. 443. https://doi.org/10.1186/s12903-023-03126-4
[7]
Yoon, J.G., Yoon, J., Song, J.Y., Yoon, S., Lim, C.S., Seong, H., et al. (2020) Clinical Significance of a High SARS-CoV-2 Viral Load in the Saliva. Journal of Korean Medical Science, 35, e195. https://doi.org/10.3346/jkms.2020.35.e195
[8]
Huang, N., Pérez, P., Kato, T., Mikami, Y., Okuda, K., Gilmore, R.C., et al. (2021) SARS-CoV-2 Infection of the Oral Cavity and Saliva. Nature Medicine, 27, 892-903.
[9]
Gatt, D., Martin, I., AlFouzan, R. and Moraes, T.J. (2023) Prevention and Treatment Strategies for Respiratory Syncytial Virus (RSV). Pathogens, 12, Article 154. https://doi.org/10.3390/pathogens12020154
[10]
Topalidou, X., Kalergis, A.M. and Papazisis, G. (2023) Respiratory Syncytial Virus Vaccines: A Review of the Candidates and the Approved Vaccines. Pathogens, 12, Article 1259. https://doi.org/10.3390/pathogens12101259
[11]
Li, G., Hilgenfeld, R., Whitley, R. and De Clercq, E. (2023) Therapeutic Strategies for COVID-19: Progress and Lessons Learned. Nature Reviews Drug Discovery, 22, 449-475. https://doi.org/10.1038/s41573-023-00672-y
[12]
Meister, T.L., Brüggemann, Y., Todt, D., Conzelmann, C., Müller, J.A., Groß, R., et al. (2020) Virucidal Efficacy of Different Oral Rinses against Severe Acute Respiratory Syndrome Coronavirus 2. The Journal of Infectious Diseases, 222, 1289-1292. https://doi.org/10.1093/infdis/jiaa471
[13]
Farmaha, J.K., James, J.N., Frazier, K., Sahajpal, N.S., Mondal, A.K., Bloomquist, D.T., et al. (2023) Reduction of SARS-CoV-2 Salivary Viral Load with Pre-Procedural Mouth Rinses: A Randomised, Controlled, Clinical Trial. British Dental Journal, 234, 593-600. https://doi.org/10.1038/s41415-023-5741-9
[14]
Kärber, G. (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenver-suche. Naunyn-SchmiedebergsArchiv für ExperimentellePathologie und Pharma-kologie, 162, 480-483. https://doi.org/10.1007/bf01863914
[15]
Reed, L.J. and Muench, H. (1938) A Simple Method of Estimating Fifty Per Cent Endpoints. American Journal of Epidemiology, 27, 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408
[16]
ICH (2024) ICH Q5A(R2) Guideline on Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q5ar2-guideline-viral-safety-evaluation-biotechnology-products-derived-cell-lines-human-or-animal-origin-step-5_en.pdf, 2024-01-04.
[17]
Meister, T.L., Brüggemann, Y., Becker, B., Paulmann, D., Brill, F.H.H. and Steinmann, E. (2024) Virucidal Activity of a Plant-Oil-Based Oral Rinse against Respiratory Viruses. Journal of Hospital Infection, 147, 83-86. https://doi.org/10.1016/j.jhin.2024.02.023
[18]
Weidmann, M.D., Green, D.A., Berry, G.J. and Wu, F. (2023) Assessing Respiratory Viral Exclusion and Affinity Interactions through Co-Infection Incidence in a Pediatric Population during the 2022 Resurgence of Influenza and RSV. Frontiers in Cellular and Infection Microbiology, 13, Article 1208235. https://doi.org/10.3389/fcimb.2023.1208235
[19]
Guitart, C., Bobillo-Perez, S., Alejandre, C., Armero, G., Launes, C., Cambra, F.J., et al. (2022) Bronchiolitis, Epidemiological Changes during the SARS-CoV-2 Pandemic. BMC Infectious Diseases, 22, Article No. 84. https://doi.org/10.1186/s12879-022-07041-x
[20]
Boattini, M., Almeida, A., Comini, S., Bianco, G., Cavallo, R. and Costa, C. (2024) From Forgotten Pathogen to Target for New Vaccines: What Clinicians Need to Know about Respiratory Syncytial Virus Infection in Older Adults. Viruses, 16, Article 531. https://doi.org/10.3390/v16040531
[21]
Seneviratne, C.J., Balan, P., Ko, K.K.K., Udawatte, N.S., Lai, D., Ng, D.H.L., et al. (2020) Efficacy of Commercial Mouth-Rinses on SARS-CoV-2 Viral Load in Saliva: Randomized Control Trial in Singapore. Infection, 49, 305-311. https://doi.org/10.1007/s15010-020-01563-9
[22]
Eduardo, F.d.P., Corrêa, L., Heller, D., Daep, C.A., Benitez, C., Malheiros, Z., et al. (2021) Salivary SARS-CoV-2 Load Reduction with Mouthwash Use: A Randomized Pilot Clinical Trial. Heliyon, 7, e07346. https://doi.org/10.1016/j.heliyon.2021.e07346
[23]
Elzein, R., Abdel-Sater, F., Fakhreddine, S., Hanna, P.A., Feghali, R., Hamad, H., et al. (2021) In Vivo Evaluation of the Virucidal Efficacy of Chlorhexidine and Povidone-Iodine Mouthwashes against Salivary SARS-CoV-2. A Randomized-Controlled Clinical Trial. Journal of Evidence Based Dental Practice, 21, Article ID: 101584. https://doi.org/10.1016/j.jebdp.2021.101584
[24]
Rahman, G.S., Alshetan, A.A.N., Alotaibi, S.S.O., Alaskar, B.M.I. and Baseer, M.A. (2023) Is Chlorhexidine Mouthwash Effective in Lowering COVID-19 Viral Load? A Systematic Review. European Review for Medical and Pharmacological Sciences, 27, 366-377.
[25]
Zhang, M., Meng, N., Duo, H., Yang, Y., Dong, Q. and Gu, J. (2023) Efficacy of Mou-thwash on Reducing Salivary SARS-CoV-2 Viral Load and Clinical Symptoms: A Systematic Review and Meta-Analysis. BMC Infectious Diseases, 23, Article No. 678. https://doi.org/10.1186/s12879-023-08669-z
[26]
Sbricoli, L., Schiavon, L., Brunello, G., Brun, P., Becker, K. and Sivolella, S. (2023) Efficacy of Different Mouthwashes against COVID-19: A Systematic Review and Network Meta-Analysis. Japanese Dental Science Review, 59, 334-356. https://doi.org/10.1016/j.jdsr.2023.09.003
[27]
Fernandez, M.D.S., Guedes, M.I.F., Langa, G.P.J., Rösing, C.K., Cavagni, J. and Muniz, F.W.M.G. (2021) Virucidal Efficacy of Chlorhexidine: A Systematic Review. Odontology, 110, 376-392. https://doi.org/10.1007/s10266-021-00660-x
[28]
Affoo, R.H., Foley, N., Garrick, R., Siqueira, W.L. and Martin, R.E. (2015) Meta-Analysis of Salivary Flow Rates in Young and Older Adults. Journal of the American Geriatrics Society, 63, 2142-2151. https://doi.org/10.1111/jgs.13652
[29]
Dawes, C. and Macpherson, L.M.D. (1992) Effects of Nine Different Chewing-Gums and Lozenges on Salivary Flow Rate and Ph. Caries Research, 26, 176-182. https://doi.org/10.1159/000261439
[30]
Nomura, T., Nazmul, T., Yoshimoto, R., Higashiura, A., Oda, K. and Sakaguchi, T. (2021) Ethanol Susceptibility of SARS-CoV-2 and Other Enveloped Viruses. Biocontrol Science, 26, 177-180. https://doi.org/10.4265/bio.26.177
[31]
Nakagawara, K., Chubachi, S., Namkoong, H., Tanaka, H., Lee, H., Azekawa, S., et al. (2022) Impact of Upper and Lower Respiratory Symptoms on COVID-19 Outcomes: A Multicenter Retrospective Cohort Study. Respiratory Research, 23, Article No. 315. https://doi.org/10.1186/s12931-022-02222-3