全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biophysics  2024 

耐铬Serratia sp. CM01基因组序列及铬代谢基因分析
Chromium-Resistant Serratia sp. CM01 Genome Sequence and Analysis of Chromium Metabolism Genes

DOI: 10.12677/biphy.2024.123005, PP. 39-50

Keywords: Serratia sp. CM01,全基因组测序,生物信息学,铬代谢相关基因
Serratia sp. CM01
, Whole-Genome Sequencing, Bioinformatics, Chromium Metabolism-Related Genes

Full-Text   Cite this paper   Add to My Lib

Abstract:

以耐铬(VI)菌株Serratia sp. CM01为研究对象,探究其全基因组信息,挖掘其潜在的铬代谢相关基因。本研究采用基因组测序技术对CM01进行全基因组测序并分析其基因序列特征;同时,结合前期差异蛋白研究结果,进行铬代谢相关基因分析。测序结果表明,CM01基因组大小为4,902,254 bp,预测编码蛋白序列的基因有4547个;蛋白功能注释结果显示其涉及氧化还原、氨基酸代谢、碳水化合物和能量代谢编码的基因有较高的占比。结合前期蛋白组学的结果,筛选出了12个与铬代谢相关的基因。qRT-PCR分析结果显示,在Cr(VI)胁迫下,ChrA1、SrpcGrxANemA基因的表达上调。CM01基因组全序列已上传至NCBI,序列号:PRJNA675313。本研究通过对CM01的基因组序列分析,为全面了解细菌的铬代谢机制提供基础,为修复环境铬污染的新生物技术提供理论依据。
The study focused on the chromium (VI)-resistant bacterial strain Serratia sp. CM01 to explore its whole-genome information and to mine its potential chromium metabolism-related genes. In this research, genomic sequencing technology was employed to perform whole-genome sequencing on CM01 and to analyze its gene sequence characteristics. Additionally, the results from previous differential protein studies were integrated to analyze genes related to chromium metabolism. The sequencing results indicated that the CM01 genome is 4,902,254 base pairs in size, with 4547 genes predicted to encode protein sequences. Protein function annotation revealed a high proportion of genes involved in oxidation-reduction, amino acid metabolism, carbohydrate metabolism, and energy metabolism. Combining the outcomes from previous proteomics studies, 12 genes related to chromium metabolism were identified. Quantitative real-time PCR analysis showed that the expression of ChrA1, Srpc, GrxA, and NemA genes was upregulated under Cr(VI) stress. The complete genome sequence of CM01 has been uploaded to NCBI with the accession number PRJNA675313. Through the genomic sequence analysis of CM01, this study provides a foundation for a comprehensive understanding of bacterial chromium metabolism mechanisms and offers a theoretical basis for the development of new biotechnologies for the remediation of environmental chromium pollution.

References

[1]  Jobby, R., Jha, P., Yadav, A.K. and Desai, N. (2018) Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere, 207, 255-266.
https://doi.org/10.1016/j.chemosphere.2018.05.050
[2]  Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J. (2012) Heavy Metal Toxicity and the Environment. In: Experientia Supplementum, Springer, 133-164.
https://doi.org/10.1007/978-3-7643-8340-4_6
[3]  Wang, S. and Shi, X. (2001) Molecular Mechanisms of Metal Toxicity and Carcinogenesis. Molecular and Cellular Biochemistry, 222, 3-9.
https://doi.org/10.1023/a:1017918013293
[4]  Sharma, P., Singh, S.P., Parakh, S.K. and Tong, Y.W. (2022) Health Hazards of Hexavalent Chromium (Cr(VI)) and Its Microbial Reduction. Bioengineered, 13, 4923-4938.
https://doi.org/10.1080/21655979.2022.2037273
[5]  Romanenko, V.I. and Koren’kov, V.N. (1977) Pure Culture of Bacteria Using Chromates and Bichromates as Hydrogen Acceptors during Development under Anaerobic Conditions. Mikrobiologiia, 46, 414-417.
[6]  Hossain, M., Tasnim, S., Safa, A., Rayhan, A.B.H., Khan, M.T.I.A., Bulbul, N., et al. (2020) Draft Genome Sequence of Bacillus Cereus TN10, a Chromium-Resistant and-Reducing Strain Isolated from Tannery Effluent. Microbiology Resource Announcements, 9, e00603-20.
https://doi.org/10.1128/mra.00603-20
[7]  Li, J., Tang, C., Zhang, M., Fan, C., Guo, D., An, Q., et al. (2021) Exploring the Cr(vi) Removal Mechanism of Sporosarcina Saromensis M52 from a Genomic Perspective. Ecotoxicology and Environmental Safety, 225, Article 112767.
https://doi.org/10.1016/j.ecoenv.2021.112767
[8]  Sahoo, H., Kumari, S. and Naik, U.C. (2021) Characterization of Multi-Metal-Resistant Serratia Sp. GP01 for Treatment of Effluent from Fertilizer Industries. Archives of Microbiology, 203, 5425-5435.
https://doi.org/10.1007/s00203-021-02523-z
[9]  Zhang, K. and Li, F. (2011) Isolation and Characterization of a Chromium-Resistant Bacterium Serratia Sp. Cr-10 from a Chromate-Contaminated Site. Applied Microbiology and Biotechnology, 90, 1163-1169.
https://doi.org/10.1007/s00253-011-3120-y
[10]  贾燕, 白群华, 肖虹. 重庆市某电镀厂聚集区域铬污染状况调查[J]. 现代预防医学, 2014, 41(6): 978-980+983.
[11]  刘媛, 白群华, 何劲, 等. 耐铬(Ⅵ)粘质沙雷氏菌CM01的筛选鉴定及其铬(Ⅵ)代谢特性研究[J]. 现代预防医学, 2020, 47(17): 3212-3216.
[12]  Chin, C., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., et al. (2016) Phased Diploid Genome Assembly with Single-Molecule Real-Time Sequencing. Nature Methods, 13, 1050-1054.
https://doi.org/10.1038/nmeth.4035
[13]  Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. and Phillippy, A.M. (2017) Canu: Scalable and Accurate Long-Read Assembly via Adaptivek-Mer Weighting and Repeat Separation. Genome Research, 27, 722-736.
https://doi.org/10.1101/gr.215087.116
[14]  Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., et al. (2014) Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLOS ONE, 9, e112963.
https://doi.org/10.1371/journal.pone.0112963
[15]  Besemer, J. (2001) Genemarks: A Self-Training Method for Prediction of Gene Starts in Microbial Genomes. Implications for Finding Sequence Motifs in Regulatory Regions. Nucleic Acids Research, 29, 2607-2618.
https://doi.org/10.1093/nar/29.12.2607
[16]  Chan, P.P., Lin, B.Y., Mak, A.J. and Lowe, T.M. (2021) Trnascan-Se 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Research, 49, 9077-9096.
https://doi.org/10.1093/nar/gkab688
[17]  Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E.P., Rivas, E., Eddy, S.R., et al. (2017) Rfam 13.0: Shifting to a Genome-Centric Resource for Non-Coding RNA Families. Nucleic Acids Research, 46, D335-D342.
https://doi.org/10.1093/nar/gkx1038
[18]  Blin, K., Shaw, S., Kloosterman, A.M., Charlop-Powers, Z., van Wezel, G.P., Medema, M.H., et al. (2021) Antismash 6.0: Improving Cluster Detection and Comparison Capabilities. Nucleic Acids Research, 49, W29-W35.
https://doi.org/10.1093/nar/gkab335
[19]  刘媛. 铬(Ⅵ)压力下沙雷氏菌CM01的蛋白差异表达及耐铬(Ⅵ)机制研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2021.
[20]  Stothard, P. and Wishart, D.S. (2004) Circular Genome Visualization and Exploration Using Cgview. Bioinformatics, 21, 537-539.
https://doi.org/10.1093/bioinformatics/bti054
[21]  Chai, L., Ding, C., Tang, C., Yang, W., Yang, Z., Wang, Y., et al. (2018) Discerning Three Novel Chromate Reduce and Transport Genes of Highly Efficient Pannonibacter Phragmitetus BB: From Genome to Gene and Protein. Ecotoxicology and Environmental Safety, 162, 139-146.
https://doi.org/10.1016/j.ecoenv.2018.06.090
[22]  Guillén-Jiménez, F.D.M., Morales-Barrera, L., Morales-Jiménez, J., Hernández-Rodríguez, C.H. and Cristiani-Urbina, E. (2008) Modulation of Tolerance to Cr(VI) and Cr(VI) Reduction by Sulfate Ion in a Candida Yeast Strain Isolated from Tannery Wastewater. Journal of Industrial Microbiology & Biotechnology, 35, 1277-1287.
https://doi.org/10.1007/s10295-008-0425-7
[23]  Shi, K., Radhakrishnan, M., Dai, X., Rosen, B.P. and Wang, G. (2021) Nema Catalyzes Trivalent Organoarsenical Oxidation and Is Regulated by the Trivalent Organoarsenical-Selective Transcriptional Repressor Nemr. Environmental Science & Technology, 55, 6485-6494.
https://doi.org/10.1021/acs.est.1c00574
[24]  He, M., Li, X., Guo, L., Miller, S.J., Rensing, C. and Wang, G. (2010) Characterization and Genomic Analysis of Chromate Resistant and Reducing Bacillus cereus Strain SJ1. BMC Microbiology, 10, Article No. 221.
https://doi.org/10.1186/1471-2180-10-221
[25]  Teitzel, G.M., Geddie, A., De Long, S.K., Kirisits, M.J., Whiteley, M. and Parsek, M.R. (2006) Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa. Journal of Bacteriology, 188, 7242-7256.
https://doi.org/10.1128/jb.00837-06
[26]  Argüello, J.M., Eren, E. and González-Guerrero, M. (2007) The Structure and Function of Heavy Metal Transport P1b-atpases. Bio Metals, 20, 233-248.
https://doi.org/10.1007/s10534-006-9055-6
[27]  Henne, K.L., Nakatsu, C.H., Thompson, D.K. and Konopka, A.E. (2009) High-Level Chromate Resistance in Arthrobacter Sp. Strain FB24 Requires Previously Uncharacterized Accessory Genes. BMC Microbiology, 9, Article No. 199.
https://doi.org/10.1186/1471-2180-9-199
[28]  Zhou, S.M., Dong, L.L., He, Y. and Xiao, H. (2017) Characterization of Chromate Resistance in Genetically Engineered Escherichia coli Expressing Chromate Ion Transporter ChrA. Journal of Southern Medical University, 37, 1290-1295.
[29]  李星龙. 耐铬沙雷氏菌CM01基因组测序分析及关键基因对铬代谢的影响研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2022.
[30]  Kan, G., Wang, X., Jiang, J., Zhang, C., Chi, M., Ju, Y., et al. (2018) Copper Stress Response in Yeast Rhodotorula mucilaginosa AN5 Isolated from Sea Ice, Antarctic. Microbiology Open, 8, e00657.
https://doi.org/10.1002/mbo3.657
[31]  Cao, L., Lu, M., Zhao, M., Zhang, Y., Nong, Y., Hu, M., et al. (2023) Physiological and Transcriptional Studies Reveal Cr(VI) Reduction Mechanisms in the Exoelectrogen Cellulomonas fimi Clb-11. Frontiers in Microbiology, 14, Article 1161303.
https://doi.org/10.3389/fmicb.2023.1161303
[32]  Liu, Y., Qiu, Y., Yin, Q., Li, X., Bai, Q., Li, Y., et al. (2021) Itraq-Based Quantitative Proteomic Reveals Proteomic Changes in Serratia Sp. CM01 and Mechanism of Cr(VI) Resistance. Ecotoxicology and Environmental Safety, 228, Article 112899.
https://doi.org/10.1016/j.ecoenv.2021.112899
[33]  Nachin, L. (2003) SufC: An Unorthodox Cytoplasmic ABC/ATPase Required for [Fe-S] Biogenesis under Oxidative Stress. The EMBO Journal, 22, 427-437.
https://doi.org/10.1093/emboj/cdg061
[34]  Gomes, A.F.R., Almeida, M.C., Sousa, E. and Resende, D.I.S.P. (2024) Siderophores and Metallophores: Metal Complexation Weapons to Fight Environmental Pollution. Science of the Total Environment, 932, Article 173044.
https://doi.org/10.1016/j.scitotenv.2024.173044
[35]  Gaudu, P. and Weiss, B. (2000) Flavodoxin Mutants of Escherichia coli K-12. Journal of Bacteriology, 182, 1788-1793.
https://doi.org/10.1128/jb.182.7.1788-1793.2000
[36]  Shi, K., Radhakrishnan, M., Dai, X., Rosen, B.P. and Wang, G. (2021) NemA Catalyzes Trivalent Organoarsenical Oxidation and Is Regulated by the Trivalent Organoarsenical-Selective Transcriptional Repressor NemR. Environmental Science & Technology, 55, 6485-6494.
https://doi.org/10.1021/acs.est.1c00574

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133