全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Complementarity of Renewable Energy Resources (Solar, Wind and Hydraulic) in the S?o Francisco River Basin

DOI: 10.4236/jgis.2024.166022, PP. 367-396

Keywords: Hybrid Renewable Energy, Sao Francisco River Basin, Pearson, Spearman and Kendall Correlations Co-Located Plan, Solar, Wind and Hydraulic Generation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The S?o Francisco River basin is 2368 km long, with an average annual flow of 2846 m3/s and a drainage area of 639,219 km2. About 54% of this area lies in Brazil’s semi-arid northeast, with annual rainfall between 450 - 800 mm. The basin’s hydroelectric capacity is around 10,200 MW, but recent climate phenomena like El Ni?o and La Ni?a, worsened by global climate change, have reduced plant capacity factors from 0.70 - 0.80 to 0.35. Hybrid solar and wind systems integrated with hydroelectric plants offer a promising solution, increasing capacity and providing reliable storage through pumped water storage. This study assesses the complementarity of solar, wind, and hydroelectric energy in the S?o Francisco basin. Data from NASA POWER and CAMS, validated with terrestrial stations, were analyzed using Pearson, Spearman, and Kendall correlations. Results show variable complementarity across time scales, with weak complementarity annually but strong complementarity observed on daily and monthly scales. The study focuses on raw resource data, without considering integration or economic constraints.

References

[1]  IEA (2021) World Energy Outlook 2021.
https://www.iea.org/reports/world-energy-outlook-2021/
[2]  BEN (2023) Balan¸co energ’etico nacional.
[3]  USEIA (2023) Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2023.
[4]  ANA (2024) Agência nacional das Aguas.
https://www.gov.br
[5]  Ferraz de Campos, É., Pereira, E.B., van Oel, P., Martins, F.R., Gonçalves, A.R. and Costa, R.S. (2021) Hybrid Power Generation for Increasing Water and Energy Securities during Drought: Exploring Local and Regional Effects in a Semi-Arid Basin. Journal of Environmental Management, 294, Article ID: 112989.
https://doi.org/10.1016/j.jenvman.2021.112989
[6]  IPCC (2023) Intergovernmental Panel on Climate Change.
https://www.ipcc.ch/report/ar6/syr/
[7]  Simpson, G.B. and Jewitt, G.P.W. (2019) The Development of the Water-Energy-Food Nexus as a Framework for Achieving Resource Security: A Review. Frontiers in Environmental Science, 7, Article 8.
https://doi.org/10.3389/fenvs.2019.00008
[8]  Pereira, E.B., Martins, F.R., Gonçalves, A.R., Costa, R.S., Lima, F. d., Rüther, R., Abreu, S.D., Tiepolo, G.M., Pereira, S.V. and Souza, J.D. (2017) Atlas brasileiro de energia solar, São josé dos Campos: Inpe 1.
[9]  EnergyData.info (2024) Global Wind Atlas.
https://globalwindatlas.info/en
[10]  ONS (2021) Operador nacional do sistema el’etrico.
http://www.ons.org.br/paginas/energia-agora/reservatorios
[11]  Howlader, H.O.R., Sediqi, M.M., Ibrahimi, A.M. and Senjyu, T. (2018) Optimal Thermal Unit Commitment for Solving Duck Curve Problem by Introducing CSP, PSH and Demand Response. IEEE Access, 6, 4834-4844.
https://doi.org/10.1109/access.2018.2790967
[12]  Denholm, P., O’Connell, M., Brinkman, G. and Jorgenson, J. (2015) Over-Generation from Solar Energy in California. A Field Guide to the Duck Chart. National Renewable Energy Laboratory.
[13]  Kahn, E. (1978) Reliability of Wind Power from Dispersed Sites: A Preliminary Assessment. Lawrence Berkeley Laboratory.
[14]  Pedruzzi, R., Silva, A.R., Soares dos Santos, T., Araujo, A.C., Cotta Weyll, A.L., Lago Kitagawa, Y.K., et al. (2023) Review of Mapping Analysis and Complementarity between Solar and Wind Energy Sources. Energy, 283, Article ID: 129045.
https://doi.org/10.1016/j.energy.2023.129045
[15]  Beluco, A., de Souza, P.K. and Krenzinger, A. (2008) A Dimensionless Index Evaluating the Time Complementarity between Solar and Hydraulic Energies. Renewable Energy, 33, 2157-2165.
https://doi.org/10.1016/j.renene.2008.01.019
[16]  Cantor, D., Mesa, O. and Ochoa, A. (2022) Complementarity Beyond Correlation. In: Jurasz, J. and Beluco, A., Eds., Complementarity of Variable Renewable Energy Sources, Elsevier, 121-141.
https://doi.org/10.1016/b978-0-323-85527-3.00003-0
[17]  Perini de Souza, N.B., Cardoso dos Santos, J.V., Sperandio Nascimento, E.G., Bandeira Santos, A.A. and Moreira, D.M. (2022) Long-Range Correlations of the Wind Speed in a Northeast Region of Brazil. Energy, 243, Article ID: 122742.
https://doi.org/10.1016/j.energy.2021.122742
[18]  Ma, T., Yang, H., Lu, L. and Peng, J. (2015) Optimal Design of an Autonomous Solar-Wind-Pumped Storage Power Supply System. Applied Energy, 160, 728-736.
https://doi.org/10.1016/j.apenergy.2014.11.026
[19]  Schmidt, J., Cancella, R. and Pereira, A.O. (2016) An Optimal Mix of Solar PV, Wind and Hydro Power for a Low-Carbon Electricity Supply in Brazil. Renewable Energy, 85, 137-147.
https://doi.org/10.1016/j.renene.2015.06.010
[20]  Haikarainen, C., Pettersson, F. and Saxén, H. (2019) Optimising the Regional Mix of Intermittent and Flexible Energy Technologies. Journal of Cleaner Production, 219, 508-517.
https://doi.org/10.1016/j.jclepro.2019.02.103
[21]  Awan, A.B., Zubair, M., Sidhu, G.A.S., Bhatti, A.R. and Abo-Khalil, A.G. (2018) Performance Analysis of Various Hybrid Renewable Energy Systems Using Battery, Hydrogen, and Pumped Hydro-Based Storage Units. International Journal of Energy Research, 43, 6296-6321.
https://doi.org/10.1002/er.4343
[22]  Zhang, L., Xin, H., Wu, J., Ju, L. and Tan, Z. (2017) A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power. Mathematical Problems in Engineering, 2017, Article ID: 9485127.
https://doi.org/10.1155/2017/9485127
[23]  Yimen, N., Hamandjoda, O., Meva’a, L., Ndzana, B. and Nganhou, J. (2018) Analyzing of a Photovoltaic/Wind/Biogas/Pumped-Hydro Off-Grid Hybrid System for Rural Electrification in Sub-Saharan Africa—Case Study of Djoundé in Northern Cameroon. Energies, 11, Article 2644.
https://doi.org/10.3390/en11102644
[24]  de Jong, P., Kiperstok, A., Sánchez, A.S., Dargaville, R. and Torres, E.A. (2016) Integrating Large Scale Wind Power into the Electricity Grid in the Northeast of Brazil. Energy, 100, 401-415.
https://doi.org/10.1016/j.energy.2015.12.026
[25]  Guezgouz, M., Jurasz, J. and Bekkouche, B. (2019) Techno-Economic and Environmental Analysis of a Hybrid PV-WT-PSH/BB Standalone System Supplying Various Loads. Energies, 12, Article 514.
https://doi.org/10.3390/en12030514
[26]  Gao, J., Zheng, Y., Li, J., Zhu, X. and Kan, K. (2018) Optimal Model for Complementary Operation of a Photovoltaic-Wind-Pumped Storage System. Mathematical Problems in Engineering, 2018, Article ID: 5346253.
https://doi.org/10.1155/2018/5346253
[27]  Wang, Z., Fang, G., Wen, X., Tan, Q., Zhang, P. and Liu, Z. (2023) Coordinated Operation of Conventional Hydropower Plants as Hybrid Pumped Storage Hydropower with Wind and Photovoltaic Plants. Energy Conversion and Management, 277, Article ID: 116654.
https://doi.org/10.1016/j.enconman.2022.116654
[28]  Muñoz-Pincheira, J.L., Salazar, L., Sanhueza, F. and Lüer-Villagra, A. (2024) Temporal Complementarity Analysis of Wind and Solar Power Potential for Distributed Hybrid Electric Generation in Chile. Energies, 17, Article 1890.
https://doi.org/10.3390/en17081890
[29]  dos Anjos, P.S., da Silva, A.S.A., Stošić, B. and Stošić, T. (2015) Long-term Correlations and Cross-Correlations in Wind Speed and Solar Radiation Temporal Series from Fernando De Noronha Island, Brazil. Physica A: Statistical Mechanics and its Applications, 424, 90-96.
https://doi.org/10.1016/j.physa.2015.01.003
[30]  Cantão, M.P., Bessa, M.R., Bettega, R., Detzel, D.H.M. and Lima, J.M. (2017) Evaluation of Hydro-Wind Complementarity in the Brazilian Territory by Means of Correlation Maps. Renewable Energy, 101, 1215-1225.
https://doi.org/10.1016/j.renene.2016.10.012
[31]  Silva, A.R., Pimenta, F.M., Assireu, A.T. and Spyrides, M.H.C. (2016) Complementarity of Brazil’s Hydro and Offshore Wind Power. Renewable and Sustainable Energy Reviews, 56, 413-427.
https://doi.org/10.1016/j.rser.2015.11.045
[32]  Beluco, A., Kroeff de Souza, P. and Krenzinger, A. (2012) A Method to Evaluate the Effect of Complementarity in Time between Hydro and Solar Energy on the Performance of Hybrid Hydro PV Generating Plants. Renewable Energy, 45, 24-30.
https://doi.org/10.1016/j.renene.2012.01.096
[33]  Borba, E.M. and Brito, R.M. (2017) An Index Assessing the Energetic Complementarity in Time between More than Two Energy Resources. Energy and Power Engineering, 9, 505-514.
https://doi.org/10.4236/epe.2017.99035
[34]  Petrakopoulou, F., Robinson, A. and Loizidou, M. (2016) Simulation and Analysis of a Stand-Alone Solar-Wind and Pumped-Storage Hydropower Plant. Energy, 96, 676-683.
https://doi.org/10.1016/j.energy.2015.12.049
[35]  De Oliveira Costa Souza Rosa, C., Costa, K., Da Silva Christo, E. and Braga Bertahone, P. (2017) Complementarity of Hydro, Photovoltaic, and Wind Power in Rio De Janeiro State. Sustainability, 9, Article 1130.
https://doi.org/10.3390/su9071130
[36]  François, B., Hingray, B., Raynaud, D., Borga, M. and Creutin, J.D. (2016) Increasing Climate-Related-Energy Penetration by Integrating Run-of-the River Hydropower to Wind/Solar Mix. Renewable Energy, 87, 686-696.
https://doi.org/10.1016/j.renene.2015.10.064
[37]  Jurasz, J. (2017) Modeling and Forecasting Energy Flow between National Power Grid and a Solar-Wind-Pumped-Hydroelectricity (PV-WT-PSH) Energy Source. Energy Conversion and Management, 136, 382-394.
https://doi.org/10.1016/j.enconman.2017.01.032
[38]  Bhandari, B., Lee, K., Lee, C.S., Song, C., Maskey, R.K. and Ahn, S. (2014) A Novel Off-Grid Hybrid Power System Comprised of Solar Photovoltaic, Wind, and Hydro Energy Sources. Applied Energy, 133, 236-242.
https://doi.org/10.1016/j.apenergy.2014.07.033
[39]  Zhou, Y., Zhao, J. and Zhai, Q. (2021) 100% Renewable Energy: A Multi-Stage Robust Scheduling Approach for Cascade Hydropower System with Wind and Photovoltaic Power. Applied Energy, 301, Article ID: 117441.
https://doi.org/10.1016/j.apenergy.2021.117441
[40]  Wang, X., Virguez, E., Mei, Y., Yao, H. and Patiño-Echeverri, D. (2022) Integrating Wind and Photovoltaic Power with Dual Hydro-Reservoir Systems. Energy Conversion and Management, 257, Article ID: 115425.
https://doi.org/10.1016/j.enconman.2022.115425
[41]  Zhou, S., Han, Y., Zalhaf, A.S., Chen, S., Zhou, T., Yang, P., et al. (2023) A Novel Multi-Objective Scheduling Model for Grid-Connected Hydro-Wind-PV-Battery Complementary System under Extreme Weather: A Case Study of Sichuan, China. Renewable Energy, 212, 818-833.
https://doi.org/10.1016/j.renene.2023.05.092
[42]  Teotónio, C., Fortes, P., Roebeling, P., Rodriguez, M. and Robaina-Alves, M. (2017) Assessing the Impacts of Climate Change on Hydropower Generation and the Power Sector in Portugal: A Partial Equilibrium Approach. Renewable and Sustainable Energy Reviews, 74, 788-799.
https://doi.org/10.1016/j.rser.2017.03.002
[43]  Jurasz, J., Guezgouz, M., Campana, P.E., Kaźmierczak, B., Kuriqi, A., Bloomfield, H., et al. (2024) Complementarity of Wind and Solar Power in North Africa: Potential for Alleviating Energy Droughts and Impacts of the North Atlantic Oscillation. Renewable and Sustainable Energy Reviews, 191, Article ID: 114181.
https://doi.org/10.1016/j.rser.2023.114181
[44]  Tapia Carpio, L.G. (2021) Mitigating the Risk of Photovoltaic Power Generation: A Complementarity Model of Solar Irradiation in Diverse Regions Applied to Brazil. Utilities Policy, 71, Article ID: 101245.
https://doi.org/10.1016/j.jup.2021.101245
[45]  Luz, T.J.D., Vila, C.U. and Aoki, A.R. (2023) Complementarity between Renewable Energy Sources and Regions—Brazilian Case. Brazilian Archives of Biology and Technology, 66, e23220442.
https://doi.org/10.1590/1678-4324-2023220442
[46]  Brandão, S.Q., Rego, E.E., Pillar, R.V. and de Carvalho, R.N.F. (2024) Hydropower Enhancing the Future of Variable Renewable Energy Integration: A Regional Analysis of Capacity Availability in Brazil. Energies, 17, Article 3339.
https://doi.org/10.3390/en17133339
[47]  de Oliveira Costa Souza Rosa, C., da Silva Christo, E., Costa, K.A. and Santos, L.d. (2020) Assessing Complementarity and Optimising the Combination of Intermittent Renewable Energy Sources Using Ground Measurements. Journal of Cleaner Production, 258, Article ID: 120946.
https://doi.org/10.1016/j.jclepro.2020.120946
[48]  Lei, H., Liu, P., Cheng, Q., Xu, H., Liu, W., Zheng, Y., et al. (2024) Frequency, Duration, Severity of Energy Drought and Its Propagation in Hydro-Wind-Photovoltaic Complementary Systems. Renewable Energy, 230, Article ID: 120845.
https://doi.org/10.1016/j.renene.2024.120845
[49]  Nogueira, E.C., Morais, R.C. and Pereira, A.O. (2023) Offshore Wind Power Potential in Brazil: Complementarity and Synergies. Energies, 16, Article 5912.
https://doi.org/10.3390/en16165912
[50]  INMET (2024) Instituto nacional de meteorologia.
https://portal.inmet.gov.br

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133