全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

虚拟现实技术对亚急性脑卒中患者上肢功能及活动能力影响的Meta分析
Meta-Analysis of the Effect of Virtual Reality Technology on Upper Limb Function and Mobility in Subacute Stroke Patients

DOI: 10.12677/acm.2024.14112982, PP. 1044-1055

Keywords: 脑卒中,亚急性期,虚拟现实
Stroke
, Subacute Phase, Virtual Reality

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:已有研究表明,VR技术能够改善脑卒中后运动功能,但针对亚急性期脑卒中患者的系统证据相对较少。因此,本研究旨在系统评价VR技术对亚急性期脑卒中患者上肢功能、平衡能力、独立性、日常生活活动及行走能力的应用效果。方法:检索PubMed、Web of Science、The Cochrane Library、Embase数据库,检索从建库至2024年1月关于VR治疗脑卒中的随机对照试验,以FMA-UE、ARAT、WMFT、BBT、TUGT、BBS、BI及FIM为观察指标,使用Review Manager 5.4软件和StataSE15.0软件进行Meta分析。结果:共纳入31项研究,总样本量1319例。与常规康复相比,VR能显著改善FMA-UE、TUGT及BI指标。两种方式在ARAT、BBS、FIM、WMFT及BBT指标上并无显著性差异。亚组分析结果显示,训练次数 > 15次,干预周期 ≥ 4周时,VR训练对FMA-UE、BBT及TUGT指标改善效果更加显著。结论:VR训练能够显著提升亚急性期脑卒中患者的上肢运动功能、步行能力及日常生活活动能力,尤其在高频次(>15次)和长周期(≥4周)干预下效果更为显著。然而,在平衡能力、手部精细运动和功能独立性方面,VR训练的改善有限,需进一步优化训练方案与设备设计,以提升全面康复效果。
Objective: Previous studies have shown that virtual reality (VR) technology can improve motor function after stroke, but the evidence specific to patients in the subacute phase of stroke remains limited. Therefore, this study aims to systematically evaluate the effects of VR technology on upper limb function, balance, independence, activities of daily living, and walking ability in subacute stroke patients. Methods: We searched PubMed, Web of Science, The Cochrane Library, and Embase databases for randomized controlled trials (RCTs) on VR therapy for stroke, published from database inception to January 2024. FMA-UE, ARAT, WMFT, BBT, TUGT, BBS, BI, and FIM were used as outcome measures. Meta-analysis was performed using Review Manager 5.4 and StataSE15.0 software. Results: A total of 31 studies with 1319 participants were included. Compared with conventional rehabilitation, VR significantly improved FMA-UE, TUGT, and BI. However, no significant differences were observed between VR and conventional rehabilitation in ARAT, BBS, FIM, WMFT, and BBT. Subgroup analysis showed that VR interventions with more than 15 sessions and intervention periods of at least 4 weeks achieved better improvements in FMA-UE, BBT, and TUGT scores. Conclusion: VR training can significantly improve upper limb function, walking ability, and activities of daily living in subacute stroke patients, especially with high-frequency (>15 sessions) and long-duration (≥4 weeks) interventions. However, the improvements in balance, fine motor skills, and functional independence remain limited, suggesting that further optimization of VR programs and equipment design is needed to enhance comprehensive rehabilitation outcomes.

References

[1]  GBD 2019 Stroke Collaborators (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet. Neurology, 20, 795-820.
[2]  Zhao, Y., Hua, X., Ren, X., Ouyang, M., Chen, C., Li, Y., et al. (2022) Increasing Burden of Stroke in China: A Systematic Review and Meta-Analysis of Prevalence, Incidence, Mortality, and Case Fatality. International Journal of Stroke, 18, 259-267.
https://doi.org/10.1177/17474930221135983
[3]  Leong, S.C., Tang, Y.M., Toh, F.M. and Fong, K.N.K. (2022) Examining the Effectiveness of Virtual, Augmented, and Mixed Reality (VAMR) Therapy for Upper Limb Recovery and Activities of Daily Living in Stroke Patients: A Systematic Review and Meta-Analysis. Journal of NeuroEngineering and Rehabilitation, 19, Article No. 93.
https://doi.org/10.1186/s12984-022-01071-x
[4]  Türkbey, T., Kutlay, S. and Gök, H. (2017) Clinical Feasibility of Xbox Kinecttm Training for Stroke Rehabilitation: A Single-Blind Randomized Controlled Pilot Study. Journal of Rehabilitation Medicine, 49, 22-29.
https://doi.org/10.2340/16501977-2183
[5]  Szczepańska-Gieracha, J., Cieślik, B., Rutkowski, S., Kiper, P. and Turolla, A. (2020) What Can Virtual Reality Offer to Stroke Patients? A Narrative Review of the Literature. NeuroRehabilitation, 47, 109-120.
https://doi.org/10.3233/nre-203209
[6]  Bernhardt, J., Hayward, K.S., Kwakkel, G., Ward, N.S., Wolf, S.L., Borschmann, K., et al. (2017) Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabilitation and Neural Repair, 31, 793-799.
https://doi.org/10.1177/1545968317732668
[7]  Cano-Mañas, M.J., Collado-Vázquez, S., Rodríguez Hernández, J., Muñoz Villena, A.J. and Cano-de-la-Cuerda, R. (2020) Effects of Video-Game Based Therapy on Balance, Postural Control, Functionality, and Quality of Life of Patients with Subacute Stroke: A Randomized Controlled Trial. Journal of Healthcare Engineering, 2020, Article ID: 5480315.
https://doi.org/10.1155/2020/5480315
[8]  Laffont, I., Froger, J., Jourdan, C., Bakhti, K., van Dokkum, L.E.H., Gouaich, A., et al. (2020) Rehabilitation of the Upper Arm Early after Stroke: Video Games versus Conventional Rehabilitation. A Randomized Controlled Trial. Annals of Physical and Rehabilitation Medicine, 63, 173-180.
https://doi.org/10.1016/j.rehab.2019.10.009
[9]  Lam, S.S.L., Liu, T.W., Ng, S.S.M., Lai, C.W.K. and Woo, J. (2022) Bilateral Movement-Based Computer Games Improve Sensorimotor Functions in Subacute Stroke Survivors. Journal of Rehabilitation Medicine, 54, jrm00307.
https://doi.org/10.2340/jrm.v54.913
[10]  Bian, M., Shen, Y., Huang, Y., Wu, L., Wang, Y., He, S., et al. (2022) A Non-Immersive Virtual Reality-Based Intervention to Enhance Lower-Extremity Motor Function and Gait in Patients with Subacute Cerebral Infarction: A Pilot Randomized Controlled Trial with 1-Year Follow-Up. Frontiers in Neurology, 13, Article ID: 985700.
https://doi.org/10.3389/fneur.2022.985700
[11]  Brunner, I., Skouen, J.S., Hofstad, H., Aßmus, J., Becker, F., Sanders, A., et al. (2017) Virtual Reality Training for Upper Extremity in Subacute Stroke (Virtues). Neurology, 89, 2413-2421.
https://doi.org/10.1212/wnl.0000000000004744
[12]  Cannell, J., Jovic, E., Rathjen, A., Lane, K., Tyson, A.M., Callisaya, M.L., et al. (2017) The Efficacy of Interactive, Motion Capture-Based Rehabilitation on Functional Outcomes in an Inpatient Stroke Population: A Randomized Controlled Trial. Clinical Rehabilitation, 32, 191-200.
https://doi.org/10.1177/0269215517720790
[13]  Chen, L., Chen, Y., Fu, W.B., Huang, D.F. and Lo, W.L.A. (2022) The Effect of Virtual Reality on Motor Anticipation and Hand Function in Patients with Subacute Stroke: A Randomized Trial on Movement-Related Potential. Neural Plasticity, 2022, Article ID: 7399995.
https://doi.org/10.1155/2022/7399995
[14]  Huang, Q., Jiang, X., Jin, Y., Wu, B., Vigotsky, A.D., Fan, L., et al. (2023) Immersive Virtual Reality-Based Rehabilitation for Subacute Stroke: A Randomized Controlled Trial. Journal of Neurology, 271, 1256-1266.
https://doi.org/10.1007/s00415-023-12060-y
[15]  Ikbali Afsar, S., Mirzayev, I., Umit Yemisci, O. and Cosar Saracgil, S.N. (2018) Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial. Journal of Stroke and Cerebrovascular Diseases, 27, 3473-3478.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.007
[16]  Kim, W., Cho, S., Park, S.H., Lee, J., Kwon, S. and Paik, N. (2018) A Low Cost Kinect-Based Virtual Rehabilitation System for Inpatient Rehabilitation of the Upper Limb in Patients with Subacute Stroke. Medicine, 97, e11173.
https://doi.org/10.1097/md.0000000000011173
[17]  Kiper, P., Przysiężna, E., Cieślik, B., Broniec-Siekaniec, K., Kucińska, A., Szczygieł, J., et al. (2022) Effects of Immersive Virtual Therapy as a Method Supporting Recovery of Depressive Symptoms in Post-Stroke Rehabilitation: Randomized Controlled Trial. Clinical Interventions in Aging, 17, 1673-1685.
https://doi.org/10.2147/cia.s375754
[18]  Lee, M., Shin, D. and Song, C. (2016) Canoe Game-Based Virtual Reality Training to Improve Trunk Postural Stability, Balance, and Upper Limb Motor Function in Subacute Stroke Patients: A Randomized Controlled Pilot Study. Journal of Physical Therapy Science, 28, 2019-2024.
https://doi.org/10.1589/jpts.28.2019
[19]  Lee, S.J. and Chun, M.H. (2014) Combination Transcranial Direct Current Stimulation and Virtual Reality Therapy for Upper Extremity Training in Patients with Subacute Stroke. Archives of Physical Medicine and Rehabilitation, 95, 431-438.
https://doi.org/10.1016/j.apmr.2013.10.027
[20]  Malik, A.N. and Masood, T. (2020) Task-Oriented Training and Exer-Gaming for Improving Mobility after Stroke: A Randomized Trial. Journal of the Pakistan Medical Association, 71, 186-190.
https://doi.org/10.47391/jpma.560
[21]  Rogers, J.M., Duckworth, J., Middleton, S., Steenbergen, B. and Wilson, P.H. (2019) Elements Virtual Rehabilitation Improves Motor, Cognitive, and Functional Outcomes in Adult Stroke: Evidence from a Randomized Controlled Pilot Study. Journal of NeuroEngineering and Rehabilitation, 16, Article No. 56.
https://doi.org/10.1186/s12984-019-0531-y
[22]  Sana, V., Ghous, M., Kashif, M., Albalwi, A., Muneer, R. and Zia, M. (2023) Effects of Vestibular Rehabilitation Therapy versus Virtual Reality on Balance, Dizziness, and Gait in Patients with Subacute Stroke: A Randomized Controlled Trial. Medicine, 102, e33203.
https://doi.org/10.1097/md.0000000000033203
[23]  Saposnik, G., Teasell, R., Mamdani, M., Hall, J., McIlroy, W., Cheung, D., et al. (2010) Effectiveness of Virtual Reality Using Wii Gaming Technology in Stroke Rehabilitation. Stroke, 41, 1477-1484.
https://doi.org/10.1161/strokeaha.110.584979
[24]  Sheehy, L., Taillon‐Hobson, A., Sveistrup, H., Bilodeau, M., Yang, C. and Finestone, H. (2020) Sitting Balance Exercise Performed Using Virtual Reality Training on a Stroke Rehabilitation Inpatient Service: A Randomized Controlled Study. PM&R, 12, 754-765.
https://doi.org/10.1002/pmrj.12331
[25]  Shin, S., Lee, H., Chang, W.H., Ko, S.H., Shin, Y. and Kim, Y. (2022) A Smart Glove Digital System Promotes Restoration of Upper Limb Motor Function and Enhances Cortical Hemodynamic Changes in Subacute Stroke Patients with Mild to Moderate Weakness: A Randomized Controlled Trial. Journal of Clinical Medicine, 11, Article No. 7343.
https://doi.org/10.3390/jcm11247343
[26]  Türkbey, T., Kutlay, S. and Gök, H. (2017) Clinical Feasibility of Xbox Kinecttm Training for Stroke Rehabilitation: A Single-Blind Randomized Controlled Pilot Study. Journal of Rehabilitation Medicine, 49, 22-29.
https://doi.org/10.2340/16501977-2183
[27]  Zhang, T., Wang, Z., Wang, P., Xing, L., Mei, L. and Zhao, J. (2017) Leap Motion-Based Virtual Reality Training for Improving Motor Functional Recovery of Upper Limbs and Neural Reorganization in Subacute Stroke Patients. Neural Regeneration Research, 12, 1823-1831.
https://doi.org/10.4103/1673-5374.219043
[28]  Choi, H., Shin, W. and Bang, D. (2021) Application of Digital Practice to Improve Head Movement, Visual Perception and Activities of Daily Living for Subacute Stroke Patients with Unilateral Spatial Neglect: Preliminary Results of a Single-Blinded, Randomized Controlled Trial. Medicine, 100, e24637.
https://doi.org/10.1097/md.0000000000024637
[29]  Choi, J.H., Han, E.Y., Kim, B.R., Kim, S.M., Im, S.H., Lee, S.Y., et al. (2014) Effectiveness of Commercial Gaming-Based Virtual Reality Movement Therapy on Functional Recovery of Upper Extremity in Subacute Stroke Patients. Annals of Rehabilitation Medicine, 38, 485-493.
https://doi.org/10.5535/arm.2014.38.4.485
[30]  de Rooij, I.J.M., van de Port, I.G.L., Punt, M., Abbink-van Moorsel, P.J.M., Kortsmit, M., van Eijk, R.P.A., et al. (2021) Effect of Virtual Reality Gait Training on Participation in Survivors of Subacute Stroke: A Randomized Controlled Trial. Physical Therapy, 101, pzab051.
https://doi.org/10.1093/ptj/pzab051
[31]  Hyun, S., Lee, J. and Lee, B. (2021) The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 18, Article No. 12229.
https://doi.org/10.3390/ijerph182212229
[32]  Rodríguez-Hernández, M., Polonio-López, B., Corregidor-Sánchez, A., Martín-Conty, J.L., Mohedano-Moriano, A. and Criado-Álvarez, J. (2023) Can Specific Virtual Reality Combined with Conventional Rehabilitation Improve Poststroke Hand Motor Function? A Randomized Clinical Trial. Journal of NeuroEngineering and Rehabilitation, 20, Article No. 38.
https://doi.org/10.1186/s12984-023-01170-3
[33]  Dąbrowská, M., Pastucha, D., Janura, M., Tomášková, H., Honzíková, L., Baníková, Š., et al. (2023) Effect of Virtual Reality Therapy on Quality of Life and Self-Sufficiency in Post-Stroke Patients. Medicina, 59, Article No. 1669.
https://doi.org/10.3390/medicina59091669
[34]  Hsieh, H. (2019) Use of a Gaming Platform for Balance Training after a Stroke: A Randomized Trial. Archives of Physical Medicine and Rehabilitation, 100, 591-597.
https://doi.org/10.1016/j.apmr.2018.11.001
[35]  Sip, P., Kozłowska, M., Czysz, D., Daroszewski, P. and Lisiński, P. (2023) Perspectives of Motor Functional Upper Extremity Recovery with the Use of Immersive Virtual Reality in Stroke Patients. Sensors, 23, Article No. 712.
https://doi.org/10.3390/s23020712
[36]  Adomavičienė, A., Daunoravičienė, K., Kubilius, R., Varžaitytė, L. and Raistenskis, J. (2019) Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Medicina, 55, Article No. 98.
https://doi.org/10.3390/medicina55040098
[37]  McEwen, D., Taillon-Hobson, A., Bilodeau, M., Sveistrup, H. and Finestone, H. (2014) Virtual Reality Exercise Improves Mobility after Stroke. Stroke, 45, 1853-1855.
https://doi.org/10.1161/strokeaha.114.005362
[38]  Adie, K., Schofield, C., Berrow, M., Wingham, J., Humfryes, J., Pritchard, C., et al. (2016) Does the Use of Nintendo Wii Sportstm Improve Arm Function? Trial of Wiitm in Stroke: A Randomized Controlled Trial and Economics Analysis. Clinical Rehabilitation, 31, 173-185.
https://doi.org/10.1177/0269215516637893
[39]  In, T., Lee, K. and Song, C. (2016) Virtual Reality Reflection Therapy Improves Balance and Gait in Patients with Chronic Stroke: Randomized Controlled Trials. Medical Science Monitor, 22, 4046-4053.
https://doi.org/10.12659/msm.898157
[40]  Peiris, C.L., Taylor, N.F., Watts, J.J., Shields, N., Brusco, N.K. and Mortimer, D. (2019) Mapping the Functional Independence Measure to a Multi-Attribute Utility Instrument for Economic Evaluations in Rehabilitation: A Secondary Analysis of Randomized Controlled Trial Data. Disability and Rehabilitation, 42, 3024-3032.
https://doi.org/10.1080/09638288.2019.1582720
[41]  Quinn, T., Harrison and McArthur (2013) Assessment Scales in Stroke: Clinimetric and Clinical Considerations. Clinical Interventions in Aging, 8, 201-211.
https://doi.org/10.2147/cia.s32405

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133