|
Material Sciences 2024
柱撑型金属有机框架材料对氙氪吸附分离的研究
|
Abstract:
文章通过研究MOF材料的Xe/Kr混合气体分离领域已发表的文献内容,合成了两种微孔DMOF吸附材料Zn-DMOF-Cl2和Zn-DMOF-Br2,并对这两种DMOF材料进行了X射线粉末衍射表征、傅里叶红外光谱分析等基础表征检测,以表征这两种材料的基本物化性质。随后通过Xe/Kr单组分吸附实验,研究了两种材料对Xe/Kr的吸附分离性能。其中,Zn-DMOF-Br2在298 K,1.0 bar和298 K,0.2 bar下Xe吸附量分别为3.06 mmol/g和1.01 mmol/g,而Zn-DMOF-Cl2在298 K,1.0 bar和298 K,0.2 bar下Xe吸附量分别为3.41 mmol/g和0.91 mmol/g。同时,测定并计算了两种DMOF材料的IAST选择性,验证了它们的Xe/Kr选择性吸附能力。
In this paper, by studying the published literature in the field of Xe/Kr mixed gas separation of MOF materials, two microporous DMOF adsorption materials Zn-DMOF-Cl2 and Zn-DMOF-Br2 were synthesized, and the two DMOF materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, and other basic characterization tests were used to characterize the basic physical and chemical properties of the two materials, and then through the Xe/Kr single component adsorption experiment, the adsorption and separation performance of the two materials on Xe/Kr was studied. Among them, the Xe adsorption capacities of Zn-DMOF-Br2 at 298 K, 1.0 bar, and 298 K, 0.2 bar were 3.06 mmol/g and 1.01 mmol/g, respectively, while the Xe adsorption capacities of Zn-DMOF-Cl2 at 298 K, 1.0 bar and 298 K, 0.2 bar were 3.41 mmol/g and 0.91 mmol/g, respectively. At the same time, the IAST selectivity of the two DMOF materials was measured and calculated, and their Xe/Kr selective adsorption capacity was verified.
[1] | Chen, Z., Li, P., Anderson, R., Wang, X., Zhang, X., Robison, L., et al. (2020) Balancing Volumetric and Gravimetric Uptake in Highly Porous Materials for Clean Energy. Science, 368, 297-303. https://doi.org/10.1126/science.aaz8881 |
[2] | Ahmed, A., Seth, S., Purewal, J., Wong-Foy, A.G., Veenstra, M., Matzger, A.J., et al. (2019) Exceptional Hydrogen Storage Achieved by Screening Nearly Half a Million Metal-Organic Frameworks. Nature Communications, 10, Article No. 1568. https://doi.org/10.1038/s41467-019-09365-w |
[3] | Lin, J., Nguyen, T.T.T., Vaidhyanathan, R., Burner, J., Taylor, J.M., Durekova, H., et al. (2021) A Scalable Metal-Organic Framework as a Durable Physisorbent for Carbon Dioxide Capture. Science, 374, 1464-1469. https://doi.org/10.1126/science.abi7281 |
[4] | Chen, K.-J., Madden, D.G., Pham, T., Forrest, K.A., Kumar, A., Yang, Q.-Y., et al. (2016) Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of Co2. Angewandte Chemie International Edition, 55, 10268-10272. https://doi.org/10.1002/anie.201603934 |
[5] | Niu, Z., Cui, X., Pham, T., Lan, P.C., Xing, H., Forrest, K.A., et al. (2019) A Metal-Organic Framework Based Methane Nano-Trap for the Capture of Coal-Mine Methane. Angewandte Chemie International Edition, 58, 10138-10141. https://doi.org/10.1002/anie.201904507 |
[6] | Lin, Y., Kong, C., Zhang, Q. and Chen, L. (2016) Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Advanced Energy Materials, 7, Article 1601296. https://doi.org/10.1002/aenm.201601296 |
[7] | Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. and Pastré, J. (2006) Metal-Organic Frameworks—Prospective Industrial Applications. Journal of Materials Chemistry, 16, 626-636. https://doi.org/10.1039/b511962f |
[8] | Thallapally, P.K., Grate, J.W. and Motkuri, R.K. (2012) Facile Xenon Capture and Release at Room Temperature Using a Metal-Organic Framework: A Comparison with Activated Charcoal. Chemical Communications, 48, 347-349. https://doi.org/10.1039/c1cc14685h |
[9] | Gong, W., Xie, Y., Wang, X., Kirlikovali, K.O., Idrees, K.B., Sha, F., et al. (2023) Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr (IV) Metal-Organic Framework to Boost Xe/Kr Separation. Journal of the American Chemical Society, 145, 2679-2689. https://doi.org/10.1021/jacs.2c13171 |
[10] | Liang, H., Jiang, K., Yan, T. and Chen, G. (2021) Xgboost: An Optimal Machine Learning Model with Just Structural Features to Discover MOF Adsorbents of Xe/Kr. ACS Omega, 6, 9066-9076. https://doi.org/10.1021/acsomega.1c00100 |
[11] | Zhao, G., Chen, Y. and Chung, Y.G. (2023) High-Throughput, Multiscale Computational Screening of Metal-Organic Frameworks for Xe/Kr Separation with Machine-Learned Parameters. Industrial & Engineering Chemistry Research, 62, 15176-15189. https://doi.org/10.1021/acs.iecr.3c02211 |
[12] | Du, X., Xiao, S., Wang, X., Sun, X., Lin, Y., Wang, Q., et al. (2023) Combination of High-Throughput Screening and Assembly to Discover Efficient Metal-Organic Frameworks on Kr/Xe Adsorption Separation. The Journal of Physical Chemistry B, 127, 8116-8130. https://doi.org/10.1021/acs.jpcb.3c03139 |
[13] | Parsaei, M., Akhbari, K. and White, J. (2022) Modulating Carbon Dioxide Storage by Facile Synthesis of Nanoporous Pillared-Layered Metal-Organic Framework with Different Synthetic Routes. Inorganic Chemistry, 61, 3893-3902. https://doi.org/10.1021/acs.inorgchem.1c03414 |
[14] | Deliere, L., Coasne, B., Topin, S., Gréau, C., Moulin, C. and Farrusseng, D. (2016) Breakthrough in Xenon Capture and Purification Using Adsorbent-Supported Silver Nanoparticles. Chemistry—A European Journal, 22, 9660-9666. https://doi.org/10.1002/chem.201601351 |
[15] | Bazan, R.E., Bastos-Neto, M., Moeller, A., Dreisbach, F. and Staudt, R. (2011) Adsorption Equilibria of O2, Ar, Kr and Xe on Activated Carbon and Zeolites: Single Component and Mixture Data. Adsorption, 17, 371-383. https://doi.org/10.1007/s10450-011-9337-3 |
[16] | Kupriyanov, M.Y., Verkhovny, A.I., Kononova, V.D. and Miroshkin, A.S. (2023) Comparison of NaX and NaA Zeolites as Absorbents in Purification Units of Pure Kr and Xe Production Plants. Chemical and Petroleum Engineering, 58, 905-909. https://doi.org/10.1007/s10556-023-01181-w |
[17] | Fraux, G., Boutin, A., Fuchs, A.H. and Coudert, F. (2018) On the Use of the IAST Method for Gas Separation Studies in Porous Materials with Gate-Opening Behavior. Adsorption, 24, 233-241. https://doi.org/10.1007/s10450-018-9942-5 |
[18] | Wang, Q., Xiong, S., Xiang, Z., Peng, S., Wang, X. and Cao, D. (2016) Dynamic Separation of Xe and Kr by Metal-Organic Framework and Covalent-Organic Materials: A Comparison with Activated Charcoal. Science China Chemistry, 59, 643-650. https://doi.org/10.1007/s11426-016-5582-3 |
[19] | Kim, M., Robinson, A.J., Sushko, M.L. and Thallapally, P.K. (2023) Aluminum-Based Microporous Metal-Organic Framework for Noble Gas Separation. Journal of Industrial and Engineering Chemistry, 118, 181-186. https://doi.org/10.1016/j.jiec.2022.11.003 |
[20] | Zeng, D., Huang, L., Fu, X., Wang, Y., Chen, J. and Liu, Q. (2024) Metal-Organic Frameworks Possessing Suitable Pores for Xe/Kr Separation. Inorganic Chemistry, 63, 5151-5157. https://doi.org/10.1021/acs.inorgchem.4c00122 |
[21] | Lee, S., Yoon, T., Kim, A., Kim, S., Cho, K., Hwang, Y.K., et al. (2016) Adsorptive Separation of Xenon/Krypton Mixtures Using a Zirconium-Based Metal-Organic Framework with High Hydrothermal and Radioactive Stabilities. Journal of Hazardous Materials, 320, 513-520. https://doi.org/10.1016/j.jhazmat.2016.08.057 |
[22] | Subrahmanyam, K.S., Spanopoulos, I., Chun, J., Riley, B.J., Thallapally, P.K., Trikalitis, P.N., et al. (2017) Chalcogenide Aerogels as Sorbents for Noble Gases (Xe, Kr). ACS Applied Materials & Interfaces, 9, 33389-33394. https://doi.org/10.1021/acsami.6b15896 |
[23] | Niu, Z., Fan, Z., Pham, T., Verma, G., Forrest, K.A., Space, B., et al. (2022) Self-Adjusting Metal-Organic Framework for Efficient Capture of Trace Xenon and Krypton. Angewandte Chemie International Edition, 61, e202117807. https://doi.org/10.1002/anie.202117807 |
[24] | Mohamed, M.H., Elsaidi, S.K., Pham, T., Forrest, K.A., Schaef, H.T., Hogan, A., et al. (2016) Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation. Angewandte Chemie International Edition, 55, 8285-8289. https://doi.org/10.1002/anie.201602287 |