全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BiOI/C-ZIF异质结光催化移除重金属Cr(VI)的性能研究
Study on the Performance of BiOI/C-ZIF Heterojunction Photocatalysis for the Removal of Heavy Metal Cr(VI)

DOI: 10.12677/ms.2024.1411173, PP. 1599-1606

Keywords: BiOI,C-ZIF,异质结,冻干法,光催化
BiOI
, C-ZIF, Heterojunction, Freeze-Drying, Photocatalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用常温搅拌法,制备BiOI催化剂,通过ZIF-8衍生制备法制备氮掺杂多孔碳C-ZIF。将BiOI与C-ZIF粉末通过冷冻干燥技术复合制备成有明显花状层级结构的BiOI/C-ZIF异质结光催化剂。BiOI/C-ZIF异质结光催化剂在模拟太阳光下可以去除水中Cr(VI),当BiOI和C-ZIF的摩尔比为1:1%时,复合材料表现出最佳去除效果,120分钟去除率达到97.2%,是纯BiOI粉末的1.296倍。该研究为进一步探究冻干法制备异质结光催化剂移除水中其他污染物如抗生素、染料等,提供了新思路。
BiOI catalysts were prepared using a room-temperature stirring method, and nitrogen-doped porous carbon (C-ZIF) was synthesized via a ZIF-8-derived preparation approach. The BiOI and C-ZIF powders were combined using freeze-drying technology to fabricate a BiOI/C-ZIF heterojunction photocatalyst with a distinct flower-like hierarchical structure. The BiOI/C-ZIF heterojunction photocatalyst demonstrated the ability to remove Cr(VI) from water under simulated sunlight. When the molar ratio of BiOI to C-ZIF was 1:1%, the composite material exhibited optimal removal efficiency, achieving a removal rate of 97.2% within 120 minutes, which is 1.296 times higher than that of pure BiOI powder. This study offers new insights for further exploration of the potential of BiOI/C-ZIF heterojunction photocatalysts in removing other contaminants from water, such as antibiotics and dyes.

References

[1]  Rahman, Z., Thomas, L., Chetri, S.P.K., Bodhankar, S., Kumar, V. and Naidu, R. (2023) A Comprehensive Review on Chromium (Cr) Contamination and Cr(VI)-Resistant Extremophiles in Diverse Extreme Environments. Environmental Science and Pollution Research, 30, 59163-59193.
https://doi.org/10.1007/s11356-023-26624-y
[2]  Anthony, E.T. and Oladoja, N.A. (2021) Process Enhancing Strategies for the Reduction of Cr(VI) to Cr(III) via Photocatalytic Pathway. Environmental Science and Pollution Research, 29, 8026-8053.
https://doi.org/10.1007/s11356-021-17614-z
[3]  Sun, Z. and Amrillah, T. (2024) Potential Application of Bismuth Oxyiodide (BiOI) When It Meets Light. Nanoscale, 16, 5079-5106.
https://doi.org/10.1039/d3nr06559f
[4]  Gao, R., Lin, W., Zhang, Y., Mai, X., Chen, J. and Lin, H. (2024) Photocatalytic Degradation of RhB in Wastewater by Zinc Ion-Doped Bi5O7I. New Journal of Chemistry, 48, 12306-12314.
https://doi.org/10.1039/d3nj05849b
[5]  Xu, Z., Wang, J., Zhang, X., Chen, F., Tu, S. and Huang, H. (2024) Chemically Bonded CdBiO2Br/BiOI Heterojunction with Strong Interfacial Electric Field for Enhanced Photocatalysis. Applied Surface Science, 672, Article ID: 160869.
https://doi.org/10.1016/j.apsusc.2024.160869
[6]  Liu, Z., Wang, Q., Cao, D., Wang, Y., Jin, R. and Gao, S. (2020) Vertical Grown BiOI Nanosheets on TiO2 NTs/Ti Meshes toward Enhanced Photocatalytic Performances. Journal of Alloys and Compounds, 820, Article ID: 153109.
https://doi.org/10.1016/j.jallcom.2019.153109
[7]  Zhang, X., Yang, W., Gao, M., Liu, H., Li, K. and Yu, Y. (2022) Room-Temperature Solid Phase Surface Engineering of BiOI Sheets Stacking G-C3N4 Boosts Photocatalytic Reduction of Cr(VI). Green Energy & Environment, 7, 66-74.
https://doi.org/10.1016/j.gee.2020.07.024
[8]  Liu, A., Liu, J., He, S., Zhang, J. and Shao, W. (2023) Bimetallic MOFs Loaded Cellulose as an Environment Friendly Bioadsorbent for Highly Efficient Tetracycline Removal. International Journal of Biological Macromolecules, 225, 40-50.
https://doi.org/10.1016/j.ijbiomac.2022.11.321
[9]  Hong, Y., Wang, B., Hu, S., Lu, S., Wu, Q., Fu, M., et al. (2023) Preparation and Photocatalytic Performance of Zn2SnO4/ZIF-8 Nanocomposite. Ceramics International, 49, 11027-11037.
https://doi.org/10.1016/j.ceramint.2022.11.298
[10]  Liu, D., Wu, Y., Xia, Q., Li, Z. and Xi, H. (2012) Experimental and Molecular Simulation Studies of CO2 Adsorption on Zeolitic Imidazolate Frameworks: ZIF-8 and Amine-Modified ZIF-8. Adsorption, 19, 25-37.
https://doi.org/10.1007/s10450-012-9407-1
[11]  Chester, A.M., Castillo-Blas, C., Sajzew, R., Rodrigues, B.P., Lampronti, G.I., Sapnik, A.F., et al. (2024) Loading and Thermal Behaviour of ZIF-8 Metal-Organic Framework-Inorganic Glass Composites. Dalton Transactions, 53, 10655-10665.
https://doi.org/10.1039/d4dt00894d
[12]  Kim, M., Firestein, K.L., Fernando, J.F.S., Xu, X., Lim, H., Golberg, D.V., et al. (2022) Strategic Design of Fe and N Co-Doped Hierarchically Porous Carbon as Superior ORR Catalyst: From the Perspective of Nanoarchitectonics. Chemical Science, 13, 10836-10845.
https://doi.org/10.1039/d2sc02726g
[13]  Qiu, M., Xu, W., Chen, S., Jia, Z., Li, Y., He, J., et al. (2023) A Novel Adsorptive and Photocatalytic System for Dye Degradation Using ZIF-8 Derived Carbon (ZIF-C)-Modified Graphene Oxide Nanosheets. Journal of the Taiwan Institute of Chemical Engineers, 143, Article ID: 104674.
https://doi.org/10.1016/j.jtice.2023.104674
[14]  Chang, X., Wang, Y., Zhou, X., Song, Y. and Zhang, M. (2021) ZIF-8-Derived Carbon-Modified G-C3N4 Heterostructure with Enhanced Photocatalytic Activity for Dye Degradation and Hydrogen Production. Dalton Transactions, 50, 17618-17624.
https://doi.org/10.1039/d1dt03385a
[15]  Semwal, A., Sajwan, D., Rawat, J., Gambhir, L., Sharma, H. and Dwivedi, C. (2023) Synergistic C-TiO2/ZIF-8 Type II Heterojunction Photocatalyst for Enhanced Photocatalytic Degradation of Methylene Blue. Environmental Science and Pollution Research, 30, 45827-45839.
https://doi.org/10.1007/s11356-023-25336-7
[16]  Huang, G., Liu, K., Muhammad, Y., Fu, T., Wang, L., Nong, J., et al. (2023) Integrating Magnetized Bentonite and Pinecone-Like BiOBr/BiOI Step-Scheme Heterojunctions as Novel Recyclable Photocatalyst for Efficient Antibiotic Degradation. Journal of Industrial and Engineering Chemistry, 122, 482-499.
https://doi.org/10.1016/j.jiec.2023.03.010
[17]  Wang, L., Wang, J., Tang, M., Wang, C., Gao, D. and Zhou, Y. (2023) Developing a Z-Scheme Ag2CO3/ZIF-8 Heterojunction for the Surface Decoration of Cotton Fabric toward Repeatable Photocatalytic Dye Degradation. Applied Surface Science, 610, Article ID: 155605.
https://doi.org/10.1016/j.apsusc.2022.155605
[18]  Zheng, W., Feng, S., Shao, C., Zhu, G., Ni, Z., Sun, J., et al. (2020) Visible Light-Driven BiOI/ZIF-8 Heterostructure and Photocatalytic Adsorption Synergistic Degradation of BPA. Research on Chemical Intermediates, 46, 2951-2967.
https://doi.org/10.1007/s11164-020-04120-z
[19]  Cai, H., Gao, J., Deng, J., Zheng, L., Liu, M., Wei, P., et al. (2023) A Novel ZIF-8 and ZIF-67 Co-Modified TiO2 Nanospheres for Highly Efficient Degradation of Methylene Blue under Simulated Sunlight. Journal of Materials Science: Materials in Electronics, 34, Article No. 2291.
https://doi.org/10.1007/s10854-023-11697-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133