|
一种空间受限环境下双轮差速机器人的位置调整算法
|
Abstract:
针对在空间受限的环境下,双轮差速机器人如何有效地进行位置调整,以避开障碍物并达到目标位置的问题,本文提出一种简易高效的位置调整算法。本文首先详细阐述了算法的实现过程,基于Gazebo和ROS2的仿真实验平台,并设计了四种最常见的窄巷道场景,通过仿真实验验证了算法的有效性和实用性。在详细阐述该算法时,我们介绍了其两步核心策略。首先,机器人通过原地旋转的方式,对各个方向进行采样,以确定在不发生碰撞的前提下可实现的最大旋转角度范围。其次,基于该旋转角度范围,机器人通过遍历不同角度的直行路径,在考虑障碍物的情况下,生成一系列潜在的运动轨迹。为确定最优轨迹,我们采用了一种基于目标点接近程度和用时的评分机制,在所有潜在运动轨迹中,选择最符合要求的路径作为控制目标路径。
Addressing the question of how a two-wheeled differential robot can effectively make position adjustments to avoid obstacles and reach a target position in a space-constrained environment, this paper proposes a simple and efficient position adjustment algorithm for two-wheeled differential drive robots to effectively navigate and avoid obstacles in constrained environments, ultimately reaching a target position. The implementation process of the algorithm is elaborated in detail, leveraging the Gazebo and ROS2 simulation platforms. Four common narrow corridor scenarios are designed to validate the effectiveness and practicality of the algorithm through simulation experiments. The algorithm comprises two core strategies. Firstly, the robot rotates in place to sample various directions, determining the maximum achievable rotation angle range without colliding with obstacles. Secondly, based on this rotation angle range, the robot generates a series of potential motion trajectories by traversing straight paths at different angles, taking into account the presence of obstacles. To determine the optimal trajectory, a scoring mechanism is adopted, which considers both the proximity to the target point and the time required. Among all potential motion trajectories, the path that best meets the requirements is selected as the control target path.
[1] | Fox, D., Burgard, W. and Thrun, S. (1997) The Dynamic Window Approach to Collision Avoidance. IEEE Robotics & Automation Magazine, 4, 23-33. https://doi.org/10.1109/100.580977 |
[2] | Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F. and Bertram, T. (2012) Trajectory Modification Considering Dynamic Constraints of Autonomous Robots. 7th German Conference on Robotics, Munich, 21-22 May 2012, 1-6. |
[3] | 陶冰冰. 智能汽车轨迹跟踪控制算法研究[D]: [硕士学位论文]. 十堰: 湖北汽车工业学院, 2018. |
[4] | Gu, J. and Fang, D. (2021) Genetic Algorithm Based LQR Control for AGV Path Tracking Problem. Journal of Physics: Conference Series, 1952, Article ID: 032012. https://doi.org/10.1088/1742-6596/1952/3/032012 |
[5] | Abbasi, A. and Moshayedi, A.J. (2017) Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based on Computational Model of KHEPERA IV. Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering, 10, 41-50. |
[6] | Craig Conlter, R. (1992) Implementation of the Pure Pursuit Path Tracking Algorithm. CMU-RI-TR-92-01, The Robotics Institute, Carnegie Mellon University. |
[7] | Rokonuzzaman, M., Mohajer, N., Nahavandi, S. and Mohamed, S. (2021) Review and Performance Evaluation of Path Tracking Controllers of Autonomous Vehicles. IET Intelligent Transport Systems, 15, 646-670. https://doi.org/10.1049/itr2.12051 |
[8] | 唐永兴, 朱战霞, 张红文, 等. 机器人运动规划方法综述[J]. 航空学报, 2023, 44(2): 181-212. |
[9] | 龙志浩, 卢秋红, 薛阳. 两轮差速机器人路径跟踪方法研究[J]. 工业控制计算机, 2023, 36(12): 18-20, 23. |
[10] | 吴迪. 四舵轮全向AGV开发与控制研究[D]: [硕士学位论文]. 济南: 山东大学, 2022. |
[11] | 龚建伟, 龚乘, 林云龙, 等. 智能车辆规划与控制策略学习方法综述[J]. 北京理工大学学报, 2022, 42(7): 665-674. |