|
复合恩施玉露茶预防脂代谢紊乱的作用研究
|
Abstract:
目的:探究复合恩施玉露茶在调节脂代谢过程中的作用。方法:将40只小鼠随机分为4组:健康对照组、高脂对照组、复合茶组、阿托伐他汀组。以高脂饲料喂养建立高脂血症模型后,分别给予生理盐水、生理盐水、复合恩施玉露茶、阿托伐他汀每日1次灌胃。4周后收集小鼠标本检测。结果:结果表明,复合茶水溶液可以显著降低小鼠血清胆固醇、甘油三酯、低密度脂蛋白的水平,提高高密度脂蛋白含量。提高肝脂肪酶(HL)、激素敏感性脂肪酶(HSL)水平,并降低炎症因子TNF-α、IL-6及IFN-γ的水平。结论:复合茶可能通过提高肝脂肪酶和激素敏感性脂肪酶水平调节小鼠脂质代谢,并且具有抗炎作用。
Objective: To explore the role of compound Enshi Yulu tea in regulating lipid metabolism. Method: 40 mice were randomly divided into 4 groups: healthy control group, hyperlipidemia control group, compound tea group, and atorvastatin group. After the hyperlipidemia model was established by feeding with the high-fat diet, normal saline, normal saline, composite tea and atorvastatin were administered by gavage once a day. Mice specimens were collected for detection after 4 weeks. Outcome: The results showed that the composite tea soup could significantly reduce the levels of serum cholesterol, triglyceride and low-density lipoprotein, and increase the content of high-density lipoprotein in mice. After the composite tea intervention, the hepatic lipase gene and hormone-sensitive lipase gene level of mice increased, meanwhile, the levels of inflammation factors, such as TNF-α, IL-6 and IFN-γ were reduced. Conclusion: Compound tea may regulate lipid metabolism in mice by increasing hepatic lipase and hormone-sensitive lipase levels and has anti-inflammatory effects.
[1] | 滕菲, 李祥溦, 李敏, 等. 绞股蓝地下部位总皂苷化学成分分析及降脂作用研究[J]. 中国中药杂志, 2022, 47(18): 5022-5031. |
[2] | 杨杰, 付慧, 张晋, 等. 罗布麻提取物改善小鼠高脂饮食诱导的代谢失调与肠道菌群紊乱[J]. 陆军军医大学学报, 2022, 44(3): 266-274. |
[3] | Annema, W. and Tietge, U.J.F. (2011) Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein—Mediated Reverse Cholesterol Transport. Current Atherosclerosis Reports, 13, 257-265. https://doi.org/10.1007/s11883-011-0175-2 |
[4] | 戴申, 鹿颜, 余鹏辉, 龚雨顺, 刘仲华. 茶叶预防衰老及衰老相关疾病研究进展[J]. 茶叶科学, 2019(1): 23-33. |
[5] | 郭盼盼, 冯任南, 陈杨. 饮茶对心血管疾病的保护作用[J]. 卫生研究, 2018, 47(5): 858-861. |
[6] | Pang, J., Zhang, Z., Zheng, T., Bassig, B.A., Mao, C., Liu, X., et al. (2016) Green Tea Consumption and Risk of Cardiovascular and Ischemic Related Diseases: A Meta-Analysis. International Journal of Cardiology, 202, 967-974. https://doi.org/10.1016/j.ijcard.2014.12.176 |
[7] | Trajkovska, K.T. (2017) High-Density Lipoprotein Metabolism and Reverse Cholesterol Transport: Strategies for Raising HDL Cholesterol. The Anatolian Journal of Cardiology, 18, 149-154. https://doi.org/10.14744/anatoljcardiol.2017.7608 |
[8] | 张阳, 卿晨. 脂肪酶的研究应用进展[J]. 昆明医学院学报, 2012, 33(S1): 207-208, 213. |
[9] | Wang, M., Wang, F., Wang, Y., Ma, X., Zhao, M. and Zhao, C. (2013) Metabonomics Study of the Therapeutic Mechanism of Gynostemma pentaphyllum and Atorvastatin for Hyperlipidemia in Rats. PLOS ONE, 8, e78731. https://doi.org/10.1371/journal.pone.0078731 |
[10] | Yang, X., Lamia, K.A. and Evans, R.M. (2007) Nuclear Receptors, Metabolism, and the Circadian Clock. Cold Spring Harbor Symposia on Quantitative Biology, 72, 387-394. https://doi.org/10.1101/sqb.2007.72.058 |
[11] | Brocker, C.N., Patel, D.P., Velenosi, T.J., Kim, D., Yan, T., Yue, J., et al. (2018) Extrahepatic PPARα Modulates Fatty Acid Oxidation and Attenuates Fasting-Induced Hepatosteatosis in Mice. Journal of Lipid Research, 59, 2140-2152. https://doi.org/10.1194/jlr.m088419 |
[12] | Wang, Y., Zhao, M., Wang, M. and Zhao, C. (2016) Profiling Analysis of Amino Acids from Hyperlipidaemic Rats Treated with Gynostemma pentaphyllum and Atorvastatin. Pharmaceutical Biology, 54, 2254-2263. https://doi.org/10.3109/13880209.2016.1152278 |
[13] | 何伟, 王莉, 黄景凤, 等. 罗布麻茶中总黄酮测定方法[J]. 食品工业, 2021, 42(8): 180-184. |
[14] | Hsunweihuang, T., Peng, G., Qianli, G., Yamahara, J., Roufogalis, B. and Li, Y. (2006) Salacia Oblonga Root Improves Postprandial Hyperlipidemia and Hepatic Steatosis in Zucker Diabetic Fatty Rats: Activation of PPAR-α. Toxicology and Applied Pharmacology, 210, 225-235. https://doi.org/10.1016/j.taap.2005.05.003 |
[15] | Yuan, F., Hou, L., Wei, L., Quan, R., Wang, J., Liu, H., et al. (2021) Fowl Adenovirus Serotype 4 Induces Hepatic Steatosis via Activation of Liver X Receptor-α. Journal of Virology, 95. https://doi.org/10.1128/jvi.01938-20 |
[16] | Wang, Z., Yao, T. and Song, Z. (2010) Chronic Alcohol Consumption Disrupted Cholesterol Homeostasis in Rats: Down‐Regulation of Low‐Density Lipoprotein Receptor and Enhancement of Cholesterol Biosynthesis Pathway in the Liver. Alcoholism: Clinical and Experimental Research, 34, 471-478. https://doi.org/10.1111/j.1530-0277.2009.01111.x |
[17] | 刘明丽, 李崇萍, 刘琨毅, 等. 脂肪酶的应用进展[J]. 食品工业, 2021, 42(7): 249-253. |
[18] | Chatterjee, C. and Sparks, D.L. (2011) Hepatic Lipase, High Density Lipoproteins, and Hypertriglyceridemia. The American Journal of Pathology, 178, 1429-1433. https://doi.org/10.1016/j.ajpath.2010.12.050 |
[19] | 冯堃, 王炳芳, 田培营, 等. 载脂蛋白CⅡ、载脂蛋白CⅢ含量和脂蛋白脂肪酶、肝脂肪酶活性在大鼠脂肪肝模型中的变化[J]. 实用临床医药杂志, 2007, 11(11): 12-14. |
[20] | Naik, S.U., Wang, X., Da Silva, J.S., Jaye, M., Macphee, C.H., Reilly, M.P., et al. (2006) Pharmacological Activation of Liver X Receptors Promotes Reverse Cholesterol Transport in vivo. Circulation, 113, 90-97. https://doi.org/10.1161/circulationaha.105.560177 |
[21] | Rizvi, F., Puri, A., Bhatia, G., Khanna, A.K., Wulff, E.M., Rastogi, A.K., et al. (2003) Antidyslipidemic Action of Fenofibrate in Dyslipidemic-Diabetic Hamster Model. Biochemical and Biophysical Research Communications, 305, 215-222. https://doi.org/10.1016/s0006-291x(03)00721-6 |
[22] | 崔金鹏, 李淑洲, 王佐梅, 等. 基于网络药理学研究桃仁-红花治疗高脂血症的作用机制[J]. 河南中医, 2021, 41(4): 612-617. |
[23] | Mokra, D., Joskova, M. and Mokry, J. (2022) Therapeutic Effects of Green Tea Polyphenol(−)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. International Journal of Molecular Sciences, 24, Article 340. https://doi.org/10.3390/ijms24010340 |
[24] | Li, Y., Rahman, S.U., Huang, Y., Zhang, Y., Ming, P., Zhu, L., et al. (2020) Green Tea Polyphenols Decrease Weight Gain, Ameliorate Alteration of Gut Microbiota, and Mitigate Intestinal Inflammation in Canines with High-Fat-Diet-Induced Obesity. The Journal of Nutritional Biochemistry, 78, Article 108324. https://doi.org/10.1016/j.jnutbio.2019.108324 |