全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳排放权交易对控排企业环境绩效的影响——基于双重机器学习模型
The Impact of Carbon Emission Trading on the Environmental Performance of Emission Control Enterprises—Based on Double/Debiased Machine Learning Model

DOI: 10.12677/jlce.2024.134027, PP. 276-284

Keywords: 碳排放权交易,企业环境绩效,双重机器学习,生产效率
Carbon Emissions Trading
, Corporate Environmental Performance, Double/Debiased Machine Learning, Production Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

自改革开放以来,我国经济飞速发展,随之而来的是企业碳排放量与日俱增,人们的生活受到了极大的影响,在一定程度上与社会可持续发展理念相悖。碳排放权交易市场作为我国实现双碳目标的工具,不同于以往强制减排措施,能有助于企业减少碳排放。本文以2010~2022年沪深A股上市公司为研究对象,将处于八个碳交易市场试点区域内的上市企业作为处理组,其他区域的上市企业作为对照组,通过构建双重机器学习模型来探究碳排放权交易对企业环境绩效的影响及作用机制,并将全样本按照产权性质、公司规模、行业竞争程度分类,进行异质性分析。研究发现,碳交易能提升企业环境绩效水平;碳交易对非国有、大规模以及行业竞争程度高的企业环境绩效水平的提升作用更显著;碳排放权交易政策通过提高企业生产效率来提升环境绩效水平,企业生产效率的确具备中介作用。最后,本文基于结论提出了相关建议:1) 完善碳排放权交易体系、2) 加强企业技术改革创新、3) 加快产业转型升级。
Since the reform and opening up, China’s economy has developed rapidly. But with it, the carbon emissions of enterprises have been increasing day by day, and people’s lives and health have been greatly affected, which to some extent contradicts the concept of sustainable social development. The carbon emissions trading market, as a tool for China to achieve its dual carbon goals, is different from previous mandatory emission reduction measures and can help companies reduce carbon emissions. This article takes A-share listed companies in Shanghai and Shenzhen from 2010 to 2022 as the research object. Listed companies in eight pilot areas of carbon trading markets are used as the treatment group, and listed companies in other areas are used as the control group. A dual machine learning model is constructed to explore the impact and mechanism of carbon emission trading on corporate environmental performance. The entire sample is classified according to property rights, company size, and industry competition level for heterogeneity analysis. Research has found that carbon trading can promote the improvement of corporate environmental performance; Carbon trading has a more significant impact on improving the environmental performance of non-state-owned, large-scale, and highly competitive enterprises in the industry; The carbon emissions trading policy enhances environmental performance by improving the production efficiency of enterprises, and enterprise production efficiency indeed plays a mediating role. Finally, based on the conclusion, this article proposes relevant suggestions: 1) improve the carbon emission trading system, 2) strengthen enterprise technological reform and innovation, and 3) accelerate industrial transformation and upgrading.

References

[1]  张墨, 王军锋. 区域碳排放权交易的风险辨识与监管机制——以京津冀协同为视角[J]. 南开学报(哲学社会科学版), 2017(6): 76-81.
[2]  Schneider, L. and La Hoz Theuer, S. (2018) Environmental Integrity of International Carbon Market Mechanisms under the Paris Agreement. Climate Policy, 19, 386-400.
https://doi.org/10.1080/14693062.2018.1521332

[3]  范庆泉, 刘净然, 王竞达. 清洁生产补贴、收入分配失衡与碳排放权再分配机制研究[J]. 世界经济, 2022, 45(7): 50-57.
[4]  Zhu, J., Fan, Y., Deng, X. and Xue, L. (2019) Low-Carbon Innovation Induced by Emissions Trading in China. Nature Communications, 10, Article No. 4088.
https://doi.org/10.1038/s41467-019-12213-6

[5]  周艳菊, 胡凤英, 周正龙. 碳税政策下制造商竞争的供应链定价策略和社会福利研究[J]. 中国管理科学, 2019, 27(7): 94-105.
[6]  宋德勇, 朱文博, 王班班. 中国碳交易试点覆盖企业的微观实证: 碳排放权交易,配额分配方法与企业绿色创新[J]. 中国人口·资源与环境, 2021, 31(1): 37-47.
[7]  路京京. 中国碳排放权交易价格的驱动因素与管理制度研究[D]: [博士学位论文]. 长春: 吉林大学, 2019.
[8]  Bento, N. and Gianfrate, G. (2020) Determinants of Internal Carbon Pricing. Energy Policy, 143, Article 111499.
https://doi.org/10.1016/j.enpol.2020.111499

[9]  Pukkala, T. (2020) At What Carbon Price Forest Cutting Should Stop. Journal of Forestry Research, 31, 713-727.
https://doi.org/10.1007/s11676-020-01101-1

[10]  赵长红, 张明明, 吴建军, 袁家海. 碳市场和电力市场耦合研究[J]. 中国环境管理, 2019, 11(4): 105-112.
[11]  黄薇, 黄晨宏, 李树青. 中国碳市场发展及电力行业参与策略分析[J]. 能源与环境, 2020(1): 2-3.
[12]  陈婉. 《中小企业节能潜力分析及供应链节能减排政策研究》报告发布通过绿色供应链管理推动中小企业节能减排[J]. 环境经济, 2020(15): 46-49.
[13]  Chernozhukov, V., Chetverikov, D., Demirer, M., et al. (2018) Double/Debiased Machine Learning for Treatment and Structural Parameters. The Econometrics Journal, 21, C1-C68.
[14]  蒋茁. 企业创新对环境绩效影响的研究述评[J]. 特区经济, 2024(6): 137-140.
[15]  马鸽, 张韬. 低碳政策试点、绿色技术创新与企业环境绩效[J]. 统计与决策, 2024, 40(5): 177-182.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133