|
软体机器人本体材料研究综述
|
Abstract:
软体机器人采用柔性材料制造,具有高度的柔性、可塑性和适应性,因此在未来的工业制造、医疗、教育和探测任务中具有广泛的应用前景。随着科学技术的迅速发展,软体机器人在本体制作材料方面的研究发生了巨大变化。现有很多研究人员对软体机器人本体制作材料类型进行了深入研究,但是目前对其进行系统性总结的文章还比较缺乏。本文对近年来软体机器人领域的研究成果进行了综述,对不同本体制作材料类型进行了对比总结,并讨论了其应用领域。最后,提出了目前软体机器人的研究还存在的一些问题,指出了软体机器人的发展前景。
Soft robots are made of flexible materials and are highly flexible, malleable and adaptable, and thus have a wide range of applications in future industrial manufacturing, medical, educational and exploration tasks. With the rapid development of science and technology, the research of soft robots in terms of body fabrication materials has changed dramatically. Many researchers have conducted in-depth studies on the types of materials used in the production of soft robots, but there is a lack of articles that systematically summarize them. This paper gives an overview of the research results in the field of soft robotics in recent years, summarizes the comparison of different ontology fabrication material types, and discusses their application areas. Finally, it puts forward some problems that still exist in the current research of soft body robots and points out the development prospect of soft body robots.
[1] | Hajiesmaili, E. and Clarke, D.R. (2021) Dielectric Elastomer Actuators. Journal of Applied Physics, 129, Article 151102. https://doi.org/10.1063/5.0043959 |
[2] | Tang, C., Ma, W., Li, B., Jin, M. and Chen, H. (2020) Cephalopod-Inspired Swimming Robot Using Dielectric Elastomer Synthetic Jet Actuator. Advanced Engineering Materials, 22, Article 2070014. https://doi.org/10.1002/adem.202070014 |
[3] | Sun, W., Liu, F., Ma, Z., Li, C. and Zhou, J. (2016) Soft Mobile Robots Driven by Foldable Dielectric Elastomer Actuators. Journal of Applied Physics, 120, Article 084901. https://doi.org/10.1063/1.4960718 |
[4] | Yang, T., Xiao, Y., Zhang, Z., Liang, Y., Li, G., Zhang, M., et al. (2018) A Soft Artificial Muscle Driven Robot with Reinforcement Learning. Scientific Reports, 8, Article 14518. https://doi.org/10.1038/s41598-018-32757-9 |
[5] | Christianson, C., Goldberg, N.N., Deheyn, D.D., Cai, S. and Tolley, M.T. (2018) Translucent Soft Robots Driven by Frameless Fluid Electrode Dielectric Elastomer Actuators. Science Robotics, 3, eaat1893. https://doi.org/10.1126/scirobotics.aat1893 |
[6] | 周方浩. 介电高弹聚合物叠层驱动器建模与软体机器人系统设计研究[D]: [博士学位论文]. 杭州: 浙江大学, 2022. |
[7] | Ren, Z., Kim, S., Ji, X., Zhu, W., Niroui, F., Kong, J., et al. (2022) A High-Lift Micro-Aerial-Robot Powered by Low-Voltage and Long-Endurance Dielectric Elastomer Actuators. Advanced Materials, 34, Article 2106757. https://doi.org/10.1002/adma.202106757 |
[8] | Kim, S., Hsiao, Y., Lee, Y., Zhu, W., Ren, Z., Niroui, F., et al. (2023) Laser-Assisted Failure Recovery for Dielectric Elastomer Actuators in Aerial Robots. Science Robotics, 8, eadf4278. https://doi.org/10.1126/scirobotics.adf4278 |
[9] | 马静, 李晨阳. 看完电影, 他造出“毒液”机器人[N]. 中国科学报, 2022-04-21(003). |
[10] | Li, Y., Peine, J., Mencattelli, M., Wang, J., Ha, J. and Dupont, P.E. (2022) A Soft Robotic Balloon Endoscope for Airway Procedures. Soft Robotics, 9, 1014-1029. https://doi.org/10.1089/soro.2020.0161 |
[11] | Liu, D., Liu, X., Chen, Z., Zuo, Z., Tang, X., Huang, Q., et al. (2022) Magnetically Driven Soft Continuum Microrobot for Intravascular Operations in Microscale. Cyborg and Bionic Systems, 2022, Article ID: 9850832. https://doi.org/10.34133/2022/9850832 |
[12] | Song, Z., Zhang, W., Zhang, W. and Paolo, D. (2022) A Novel Biopsy Capsule Robot Based on High-Speed Cutting Tissue. Cyborg and Bionic Systems, 2022, Article ID: 9783517. https://doi.org/10.34133/2022/9783517 |
[13] | Tauber, F., Desmulliez, M., Piccin, O. and Stokes, A.A. (2023) Perspective for Soft Robotics: The Field’s Past and Future. Bioinspiration & Biomimetics, 18, Article 035001. https://doi.org/10.1088/1748-3190/acbb48 |
[14] | Esser, F.J., Auth, P. and Speck, T. (2020) Artificial Venus Flytraps: A Research Review and Outlook on Their Importance for Novel Bioinspired Materials Systems. Frontiers in Robotics and AI, 7, Article 75. https://doi.org/10.3389/frobt.2020.00075 |
[15] | Rus, D. and Tolley, M.T. (2015) Design, Fabrication and Control of Soft Robots. Nature, 521, 467-475. https://doi.org/10.1038/nature14543 |
[16] | 郭晶晶, 郭校言, 脱佳霖, 等. 柔性有机聚合物光子器件及其生物医学应用[J]. 激光与光电子学进展, 2023, 60(13): 211-229. |
[17] | Li, C., Xue, Y., Han, M., Palmer, L.C., Rogers, J.A., Huang, Y., et al. (2021) Synergistic Photoactuation of Bilayered Spiropyran Hydrogels for Predictable Origami-Like Shape Change. Matter, 4, 1377-1390. https://doi.org/10.1016/j.matt.2021.01.016 |
[18] | Wu, B., Xue, Y., Ali, I., Lu, H., Yang, Y., Yang, X., et al. (2022) The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots toward Off-Road Locomotion. Research, 2022, Article 15. https://doi.org/10.34133/research.0015 |
[19] | 王宇轩, 刘朝雨, 王江北, 等. 具有多地形运动能力的双模块软体机器人[J]. 上海交通大学学报, 2022, 56(10): 1388-1396. |
[20] | 郭倩楠. 软体机器人研究现状与趋势[J]. 机器人技术与应用, 2022(3): 13-16. |
[21] | 尹富强, 许啸, 李赵春. 聚乙烯醇导电水凝胶增强剂的研究进展[J]. 功能材料, 2023, 54(2): 2036-2042+2108. |
[22] | 周伯先. 耕耘吧, 兴许会有收获!——记《合成橡胶工业》杂志创办15年[J]. 编辑学报, 1993(4): 241-245. |
[23] | 白龙. 基于流体驱动的仿生变刚度软体驱动器设计与实验研究[D]: [博士学位论文]. 北京: 北京交通大学, 2022. |
[24] | 姚建涛, 陈新博, 陈俊涛, 等. 轮足式仿生软体机器人设计与运动分析[J]. 机械工程学报, 2019, 55(5): 27-35. |
[25] | Rus, D. and Tolley, M.T. (2015) Design, Fabrication and Control of Soft Robots. Nature, 521, 467-475. https://doi.org/10.1038/nature14543 |
[26] | Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., et al. (2014) A Compliant, Underactuated Hand for Robust Manipulation. The International Journal of Robotics Research, 33, 736-752. https://doi.org/10.1177/0278364913514466 |
[27] | Deimel, R. and Brock, O. (2015) A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping. The International Journal of Robotics Research, 35, 161-185. https://doi.org/10.1177/0278364915592961 |
[28] | Zhou, J., Yi, J., Chen, X., Liu, Z. and Wang, Z. (2018) BCL-13: A 13-DOF Soft Robotic Hand for Dexterous Grasping and In-Hand Manipulation. IEEE Robotics and Automation Letters, 3, 3379-3386. https://doi.org/10.1109/lra.2018.2851360 |
[29] | Zhou, J., Chen, X., Chang, U., Lu, J., Leung, C.C.Y., Chen, Y., et al. (2019) A Soft-Robotic Approach to Anthropomorphic Robotic Hand Dexterity. IEEE Access, 7, 101483-101495. https://doi.org/10.1109/access.2019.2929690 |
[30] | Abondance, S., Teeple, C.B. and Wood, R.J. (2020) A Dexterous Soft Robotic Hand for Delicate In-Hand Manipulation. IEEE Robotics and Automation Letters, 5, 5502-5509. https://doi.org/10.1109/lra.2020.3007411 |
[31] | Becker, K., Teeple, C., Charles, N., Jung, Y., Baum, D., Weaver, J.C., et al. (2022) Active Entanglement Enables Stochastic, Topological Grasping. Proceedings of the National Academy of Sciences, 119, e2209819119. https://doi.org/10.1073/pnas.2209819119 |
[32] | Spinks, G.M., Martino, N.D., Naficy, S., Shepherd, D.J. and Foroughi, J. (2021) Dual High-Stroke and High–work Capacity Artificial Muscles Inspired by DNA Supercoiling. Science Robotics, 6, eabf4788. https://doi.org/10.1126/scirobotics.abf4788 |
[33] | Gao, J., Clement, A., Tabrizi, M. and Shankar, M.R. (2021) Molecularly Directed, Geometrically Latched, Impulsive Actuation Powers Sub-Gram Scale Motility. Advanced Materials Technologies, 7, Article 2100979. https://doi.org/10.1002/admt.202100979 |
[34] | 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603. |
[35] | Pang, W., Xu, S., Wu, J., Bo, R., Jin, T., Xiao, Y., et al. (2022) A Soft Microrobot with Highly Deformable 3D Actuators for Climbing and Transitioning Complex Surfaces. Proceedings of the National Academy of Sciences, 119, e2215028119. https://doi.org/10.1073/pnas.2215028119 |
[36] | Wang, Y., Liu, J. and Yang, S. (2022) Multi-Functional Liquid Crystal Elastomer Composites. Applied Physics Reviews, 9, Article 011301. https://doi.org/10.1063/5.0075471 |
[37] | 周洪玲, 吴也可, 赵立星. 碳纳米材料在引导骨再生膜中的应用研究进展[J]. 中国实用口腔科杂志, 2023, 16(1): 93-98. |
[38] | 张倩, 安可心, 尚宏周, 等. 高分子水凝胶在医学领域应用的研究新进展[J]. 化学通报, 2023, 86(7): 868-872. |
[39] | Yang, L., Miao, J., Li, G., Ren, H., Zhang, T., Guo, D., et al. (2022) Soft Tunable Gelatin Robot with Insect-Like Claw for Grasping, Transportation, and Delivery. ACS Applied Polymer Materials, 4, 5431-5440. https://doi.org/10.1021/acsapm.2c00522 |
[40] | Sun, M., Tian, C., Mao, L., Meng, X., Shen, X., Hao, B., et al. (2022) Reconfigurable Magnetic Slime Robot: Deformation, Adaptability, and Multifunction. Advanced Functional Materials, 32, Article 2112508. https://doi.org/10.1002/adfm.202112508 |
[41] | Rumley, E.H., Preninger, D., Shagan Shomron, A., Rothemund, P., Hartmann, F., Baumgartner, M., et al. (2023) Biodegradable Electrohydraulic Actuators for Sustainable Soft Robots. Science Advances, 9, eadf5551. https://doi.org/10.1126/sciadv.adf5551 |
[42] | 张梦然. 可生物降解人造肌肉问世[N]. 科技日报, 2023-03-24(004). |
[43] | 袁菡悠. 气动软体机械手的设计与研究[D]: [硕士学位论文]. 成都: 西华大学, 2022. |