全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

玉米产量预测研究综述
Review of Research on Maize Yield Forecasting

DOI: 10.12677/airr.2024.134077, PP. 758-764

Keywords: 玉米产量预测,作物预测系统模型,机器学习,深度学习
Maize Yield Prediction
, Crop Prediction System Model, Machine Learning, Deep Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

玉米作为全球最重要的粮食作物之一,其产量预测在确保粮食安全、优化农业管理以及支持政策制定方面具有重要意义。本文系统综述了当前玉米产量预测领域的主要方法,包括传统的作物预测系统模型、数据驱动的机器学习模型以及近年来迅速发展的深度学习模型,深入分析了气候、土壤、遥感和社会经济等多种预测变量对产量预测精度的影响。通过对现有研究的成果进行总结,本文揭示了不同模型的优劣势,并指出了现阶段研究中存在的不足,如模型泛化能力有限、多模态数据融合的挑战等。最后,本文对未来研究提出了展望,建议进一步探索多源数据的整合、优化模型的适应性以及提升预测的解释性,以推动玉米产量预测技术向更精准、智能化方向发展。本文为未来的玉米产量预测研究提供了有价值的理论基础和实践指导。
Maize is one of the most important crops globally, and accurate yield prediction is crucial for food security, agricultural management, and policy decisions. This paper reviews key methods for maize yield prediction, including crop prediction models, machine learning, and deep learning. It analyzes the impact of variables like climate, soil, remote sensing, and socioeconomic factors on prediction accuracy. By summarizing current research, this paper highlights the strengths and limitations of these models and addresses challenges such as limited generalization and multimodal data integration. Finally, it proposes future directions for improving model adaptability and prediction precision, offering valuable insights for further research.

References

[1]  钱凤魁, 王化军, 王祥国, 等. 基于WOFOST模型与遥感数据同化的县级尺度玉米估产研究[J]. 沈阳农业大学学报, 2024, 55(2): 138-152.
[2]  田谧, 张尚美, 于冷, 等. 生物技术应用在经济结构以及资源环境上的作用研究——基于DNDC-CGE模型的玉米种植影响模拟[J]. 现代管理科学, 2017(1): 66-68.
[3]  张婷, 赵明, 马树庆, 等. 基于理论-经验模型的春玉米产量丰歉动态气象评估[J]. 气象与环境科学, 2024, 47(2): 86-93.
[4]  蒙继华, 王亚楠, 林圳鑫, 等. 作物生长模型研究现状与展望[J]. 农业机械学报, 2024, 55(2): 1-15, 27.
[5]  李荣平, 周广胜, 张慧玲. 植物物候研究进展[J]. 应用生态学报, 2006, 17(3): 541-544.
[6]  韩少宇. 基于多平台遥感数据的冬小麦长势监测和产量预测[D]: [博士学位论文]. 郑州: 河南农业大学, 2023.
[7]  罗浩田. 基于混合神经网络的冬小麦产量预测方法研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2022.
[8]  陈博謇. 基于深度学习的农作物产量品质监测及模型可解释性研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2022.
[9]  吉文翰, 郑恒彪, 王迪, 等. 基于无人机影像和卷积神经网络的水稻育种材料产量预测研究[J/OL]. 南京农业大学学报: 1-13.
http://kns.cnki.net/kcms/detail/32.1148.S.20240616.0000.002.html, 2024-07-18.
[10]  黄成龙. 人工智能及云计算在智慧农业教学中的应用[J]. 科教文汇(上旬刊), 2020(4): 71-72.
[11]  王辉, 付虹雨, 岳云开, 等. 基于气候变量的苎麻产量SSA-BP预测模型[J]. 中国农业科技导报, 2024, 26(1): 110-118.
[12]  赵龙才, 李粉玲, 常庆瑞. 农作物遥感识别与单产估算研究综述[J]. 农业机械学报, 2023, 54(2): 1-19.
[13]  朱炯. 冬小麦单产遥感多尺度估算方法实验研究[D]: [硕士学位论文]. 北京: 中国科学院大学, 2021.
[14]  林用智. 耦合多类辐射传输模型的农作物参数定量反演[D]: [硕士学位论文]. 南充: 西华师范大学, 2023.
[15]  刘玉汐, 赵柠, 任景全, 等. 基于CERES-Maize模型的吉林春玉米遗传参数调试[J]. 中国农学通报, 2017, 33(24): 12-19.
[16]  郭恩亮. 多模型耦合下的玉米涝灾风险动态评价研究[D]: [博士学位论文]. 长春: 东北师范大学, 2017.
[17]  Song, L. and Jin, J. (2020) Improving Ceres-Maize for Simulating Maize Growth and Yield under Water Stress Conditions. European Journal of Agronomy, 117, Article ID: 126072.
https://doi.org/10.1016/j.eja.2020.126072
[18]  杨晓娟, 张仁和, 路海东, 等. 基于CERES-Maize模型的玉米水分关键期干旱指数天气保险: 以陕西长武为例一[J]. 中国农业气象, 2020, 41(10): 655-667.
[19]  李思琪, 王俊洁, 孟明雪, 等. 三江平原白浆土区雨养玉米AquaCrop模型模拟研究[J]. 首都师范大学学报(自然科学版), 2024, 45(5): 74-80.
[20]  马超, 吴天傲, 章伟忠, 等. 基于AquaCrop模型的水稻多目标灌溉制度优化研究[J]. 灌溉排水学报, 2024, 43(1): 9-16.
[21]  任聪哲, 范文波, 乔长录, 等. 基于AquaCrop模型的塔额盆地夏玉米节水潜力分析[J]. 干旱地区农业研究, 2024, 42(2): 140-149, 209.
[22]  徐昆, 朱秀芳, 刘莹, 等. 采用AquaCrop作物生长模型研究中国玉米干旱脆弱性[J]. 农业工程学报, 2020, 36(1): 154-161.
[23]  高俊, 虞满华, 苏国红. 新质生产力赋能农文旅产业发展[J]. 西昌学院学报(社会科学版), 2024, 36(4): 42-52.
[24]  Chen, X., Feng, L., Yao, R., Wu, X., Sun, J. and Gong, W. (2021) Prediction of Maize Yield at the City Level in China Using Multi-Source Data. Remote Sensing, 13, Article 146.
https://doi.org/10.3390/rs13010146
[25]  Khanal, S., Klopfenstein, A., KC, K., Ramarao, V., Fulton, J., Douridas, N., et al. (2021) Assessing the Impact of Agricultural Field Traffic on Corn Grain Yield Using Remote Sensing and Machine Learning. Soil and Tillage Research, 208, Article ID: 104880.
https://doi.org/10.1016/j.still.2020.104880
[26]  Cheng, M., Penuelas, J., McCabe, M.F., Atzberger, C., Jiao, X., Wu, W., et al. (2022) Combining Multi-Indicators with Machine-Learning Algorithms for Maize Yield Early Prediction at the County-Level in China. Agricultural and Forest Meteorology, 323, Article ID: 109057.
https://doi.org/10.1016/j.agrformet.2022.109057
[27]  Dhillon, R., Takoo, G., Sharma, V. and Nagle, M. (2024) Utilizing Machine Learning Framework to Evaluate the Effect of Climate Change on Maize and Soybean Yield. Computers and Electronics in Agriculture, 221, Article ID: 108982.
https://doi.org/10.1016/j.compag.2024.108982
[28]  Guo, W., Huang, Y., Huang, Y., Li, Y., Song, X., Shen, J., et al. (2024) Develop Agricultural Planting Structure Prediction Model Based on Machine Learning: The Aging of the Population Has Prompted a Shift in the Planting Structure toward Food Crops. Computers and Electronics in Agriculture, 221, Article ID: 108941.
https://doi.org/10.1016/j.compag.2024.108941
[29]  付渊, 任瑞仙, 王丽琴. 基于农业物联网的梯田农业生产环境构建与应用[J]. 物联网技术, 2024, 14(7): 133-135.
[30]  van Klompenburg, T., Kassahun, A. and Catal, C. (2020) Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Computers and Electronics in Agriculture, 177, Article ID: 105709.
https://doi.org/10.1016/j.compag.2020.105709
[31]  Shetty, S.A., Padmashree, T., Sagar, B.M. and Cauvery, N.K. (2021) Performance Analysis on Machine Learning Algorithms with Deep Learning Model for Crop Yield Prediction. In: Jeena Jacob, I., Kolandapalayam Shanmugam, S., Piramuthu, S. and Falkowski-Gilski, P., Eds., Data Intelligence and Cognitive Informatics, Springer, 739-750.
https://doi.org/10.1007/978-981-15-8530-2_58
[32]  Sagan, V., Maimaitijiang, M., Bhadra, S., Maimaitiyiming, M., Brown, D.R., Sidike, P., et al. (2021) Field-Scale Crop Yield Prediction Using Multi-Temporal Worldview-3 and Planetscope Satellite Data and Deep Learning. ISPRS Journal of Photogrammetry and Remote Sensing, 174, 265-281.
https://doi.org/10.1016/j.isprsjprs.2021.02.008
[33]  Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Zhang, J., et al. (2021) Integrating Multi-Source Data for Rice Yield Prediction across China Using Machine Learning and Deep Learning Approaches. Agricultural and Forest Meteorology, 297, Article ID: 108275.
https://doi.org/10.1016/j.agrformet.2020.108275
[34]  Li, X., Geng, H., Zhang, L., Peng, S., Xin, Q., Huang, J., et al. (2022) Improving Maize Yield Prediction at the County Level from 2002 to 2015 in China Using a Novel Deep Learning Approach. Computers and Electronics in Agriculture, 202, Article ID: 107356.
https://doi.org/10.1016/j.compag.2022.107356
[35]  Ma, Y., Zhang, Z., Kang, Y. and Özdoğan, M. (2021) Corn Yield Prediction and Uncertainty Analysis Based on Remotely Sensed Variables Using a Bayesian Neural Network Approach. Remote Sensing of Environment, 259, Article ID: 112408.
https://doi.org/10.1016/j.rse.2021.112408

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133