|
基于置信规则库的锂离子电池健康状态预测
|
Abstract:
电池以其卓越的储能能力,成为现代科技与生活不可或缺的能源核心,因此对电池老化状态精准诊断和预测是非常重要的。对于一般预测方法而言,电化学模型依赖电池内部机制进行预测,但高度敏感于材料、结构及工作条件变化。机器学习模型依赖高质量大数据与先进算法估算电池健康,但受限于数据质量和算法选择。鉴于上述模型的不足,本文提出了一种创新的电池健康预测模型——基于置信规则库的预测模型。通过构建一系列基于不确定性和模糊性处理的规则,有效应对电池内部状态的复杂性和外部环境的多变性。经实验验证该模型能够提高预测的准确性和可靠性,为锂离子电池健康状态估计及寿命预测领域提供了新的思路和方法,有望在未来能源管理和电池维护中发挥重要作用。
Batteries, with their exceptional energy storage capabilities, have emerged as an indispensable energy core in modern technology and daily life. Consequently, accurate diagnosis and prediction of battery aging status are of paramount importance. Traditional prediction methods, such as electrochemical models, rely on the internal mechanisms of batteries for prediction but are highly sensitive to changes in materials, structures, and operating conditions. On the other hand, machine learning models estimate battery health based on high-quality big data and advanced algorithms, yet they are constrained by data quality and algorithm selection. Given the limitations of these models, this paper introduces an innovative battery health prediction model—a prediction model based on a Belief Rule Base. By constructing a series of rules that address uncertainty and fuzziness, it effectively tackles the complexity of the battery’s internal state and the variability of the external environment. Experimental validation demonstrates that this model enhances prediction accuracy and reliability, offering new insights and methodologies for lithium-ion battery health state estimation and lifetime prediction. It is anticipated to play a pivotal role in future energy management and battery maintenance.
[1] | Guo, R., Wang, F., Akbar Rhamdhani, M., Xu, Y. and Shen, W. (2024) Managing the Surge: A Comprehensive Review of the Entire Disposal Framework for Retired Lithium-Ion Batteries from Electric Vehicles. Journal of Energy Chemistry, 92, 648-680. https://doi.org/10.1016/j.jechem.2024.01.055 |
[2] | Song, K., Hu, D., Tong, Y. and Yue, X. (2023) Remaining Life Prediction of Lithium-Ion Batteries Based on Health Management: A Review. Journal of Energy Storage, 57, Article ID: 106193. https://doi.org/10.1016/j.est.2022.106193 |
[3] | 熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J]. 高电压技术, 2024, 50(3): 1182-1195. |
[4] | 骆凡, 黄海宏, 王海欣. 基于电化学阻抗谱的退役动力电池荷电状态和健康状态快速预测[J]. 仪器仪表学报, 2021, 42(9): 172-180. |
[5] | 杜嘉诚. 基于滑模观测器的锂离子电池荷电状态与健康状态估计算法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2018. |
[6] | 李晓黔. 锂离子电池模型参数辨识及SOC预测仿真分析[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2016. |
[7] | 赵珍, 庞晓琼, 董渊昌. 多健康指标的锂电池剩余使用寿命区间预测[J]. 中北大学学报(自然科学版), 2023, 44(3): 263-271. |
[8] | 韦海燕, 陈孝杰, 吕治强, 等. 灰色神经网络模型在线估算锂离子电池SOH[J]. 电网技术, 2017, 41(12): 4038-4044. |
[9] | 刘聪聪, 李珺凯, 刘凯文, 等. 基于人工智能的锂电池SOC预测建模与优化[J]. 无线电通信技术, 2019, 45(3): 237-242. |
[10] | 苏雨临, 连冠, 张大骋. 等效电路模型法预测动态工况下微型直接甲醇燃料电池剩余使用寿命[J/OL]. 上海交通大学学报: 1-20. https://doi.org/10.16183/j.cnki.jsjtu.2023.072, 2024-09-18. |
[11] | 赵天意. 基于改进卡尔曼滤波的锂离子电池状态估计方法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2016. |
[12] | 张凝, 徐皑冬, 王锴, 等. 基于粒子滤波算法的锂离子电池剩余寿命预测方法研究[J]. 高技术通讯, 2017, 27(8): 699-707. |
[13] | 刘文剑, 苏宝华, 李振明. 半智能化组合夹具设计的研究[J]. 哈尔滨工业大学学报, 1994(4): 13-16. |
[14] | Yang, J.B., Liu, J., Wang, J., Sii, H.S. and Wang, H.W. (2006) Belief Rule-Base Inference Methodology Using the Evidential Reasoning Approach-rimer. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 36, 266-285. https://doi.org/10.1109/tsmca.2005.851270 |
[15] | 朱海龙, 贾如侠, 张亮, 等. 基于证据推理和置信规则库的涡扇发动机故障预测[J]. 系统仿真学报, 2022, 34(9): 2074-2086. |
[16] | 戴嘉栋, 徐晓滨, 常雷雷, 等. 基于C-BRB模型的发动机运行状态监测方法[J]. 控制工程, 2022, 29(2): 214-222. |
[17] | He, W., Cheng, X., Zhao, X., Zhou, G. and Zhu, H. (2022) An Interval Construction Belief Rule Base with Interpretability for Complex Systems. SSRN Electronic Journal, 229, Article ID: 120485. https://doi.org/10.2139/ssrn.4276309 |