全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

环状RNA参与骨关节炎的机制研究进展
Research Progress on the Mechanisms of Circular RNA Involvement in Osteoarthritis

DOI: 10.12677/acm.2024.14113000, PP. 1188-1195

Keywords: 骨关节炎,环状RNA,发病机制
Osteoarthritis
, Circular RNA, Pathogenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨关节炎(Osteoarthritis, OA)是老年人常见的关节疾病,主要临床表现为慢性疼痛、僵硬和功能障碍,其发病机制尚未完全明确。环状RNA (circRNA)是广泛存在于真核细胞中的一种非编码RNA,具有独特的共价闭合环状结构。近年来,研究发现circRNA在OA进展中起着重要作用,主要通过调节细胞外基质的代谢稳态、炎症反应以及软骨细胞的稳态来参与OA。此外,circRNA还通过细胞间外泌体机制、在软骨细胞中作为蛋白质支架以及甲基化修饰等方式影响OA的发生与发展。本文综述了circRNA的生物发生、特性和功能,探讨了circRNA在OA中的重要作用,并探索其在OA发病机制中的潜在应用。circRNA的发现及其在OA中的潜在作用为OA的早期诊断和病因治疗带来了新的希望。
Osteoarthritis (OA) is a common joint disease in the elderly, primarily characterized by chronic pain, stiffness, and functional impairment, with its pathogenesis still not fully understood. Circular RNA (circRNA), a type of non-coding RNA widely present in eukaryotic cells, has a unique covalently closed circular structure. In recent years, studies have found that circRNA plays an important role in the progression of OA, mainly by regulating extracellular matrix metabolic homeostasis, inflammatory responses, and chondrocyte homeostasis. Additionally, circRNA influences the occurrence and development of OA through mechanisms such as intercellular exosome communication, serving as protein scaffolds in chondrocytes, and methylation modifications. This article reviews the biogenesis, characteristics, and functions of circRNA, discusses its significant role in OA, and explores its potential application in the pathogenesis of OA. The discovery of circRNA and its potential role in OA offers new hope for the early diagnosis and etiological treatment of OA.

References

[1]  Martel-Pelletier, J., Barr, A.J., Cicuttini, F.M., Conaghan, P.G., Cooper, C., Goldring, M.B., et al. (2016) Osteoarthritis. Nature Reviews Disease Primers, 2, Article No. 16072.
https://doi.org/10.1038/nrdp.2016.72
[2]  Glyn-Jones, S., Palmer, A.J.R., Agricola, R., Price, A.J., Vincent, T.L., Weinans, H., et al. (2015) Osteoarthritis. The Lancet, 386, 376-387.
https://doi.org/10.1016/s0140-6736(14)60802-3
[3]  Rausch Osthoff, A., Niedermann, K., Braun, J., Adams, J., Brodin, N., Dagfinrud, H., et al. (2018) 2018 EULAR Recommendations for Physical Activity in People with Inflammatory Arthritis and Osteoarthritis. Annals of the Rheumatic Diseases, 77, 1251-1260.
https://doi.org/10.1136/annrheumdis-2018-213585
[4]  Lasda, E. and Parker, R. (2014) Circular RNAs: Diversity of Form and Function. RNA, 20, 1829-1842.
https://doi.org/10.1261/rna.047126.114
[5]  Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L., et al. (2015) Exon Circularization Requires Canonical Splice Signals. Cell Reports, 10, 103-111.
https://doi.org/10.1016/j.celrep.2014.12.002
[6]  Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S., Zhang, J., et al. (2016) The Biogenesis of Nascent Circular RNAs. Cell Reports, 15, 611-624.
https://doi.org/10.1016/j.celrep.2016.03.058
[7]  Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan, M., et al. (2014) circRNA Biogenesis Competes with Pre-mRNA Splicing. Molecular Cell, 56, 55-66.
https://doi.org/10.1016/j.molcel.2014.08.019
[8]  Lee, Y., Choe, J., Park, O.H. and Kim, Y.K. (2020) Molecular Mechanisms Driving mRNA Degradation by m6A Modification. Trends in Genetics, 36, 177-188.
https://doi.org/10.1016/j.tig.2019.12.007
[9]  Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015) Exon-Intron Circular RNAs Regulate Transcription in the Nucleus. Nature Structural & Molecular Biology, 22, 256-264.
https://doi.org/10.1038/nsmb.2959
[10]  Hansen, T.B., Jensen, T.I., Clausen, B.H., Bramsen, J.B., Finsen, B., Damgaard, C.K., et al. (2013) Natural RNA Circles Function as Efficient MicroRNA Sponges. Nature, 495, 384-388.
https://doi.org/10.1038/nature11993
[11]  Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A.L., Clark, S.J., et al. (2011) miRNA-Dependent Gene Silencing Involving AgO2-Mediated Cleavage of a Circular Antisense RNA. The EMBO Journal, 30, 4414-4422.
https://doi.org/10.1038/emboj.2011.359
[12]  Zhang, Y., Zhang, X., Chen, T., Xiang, J., Yin, Q., Xing, Y., et al. (2013) Circular Intronic Long Noncoding RNAs. Molecular Cell, 51, 792-806.
https://doi.org/10.1016/j.molcel.2013.08.017
[13]  Monachello, D., Lauraine, M., Gillot, S., Michel, F. and Costa, M. (2021) A New RNA-DNA Interaction Required for Integration of Group II Intron Retrotransposons into DNA Targets. Nucleic Acids Research, 49, 12394-12410.
https://doi.org/10.1093/nar/gkab1031
[14]  Ye, F., Gao, G., Zou, Y., Zheng, S., Zhang, L., Ou, X., et al. (2019) CircFBXW7 Inhibits Malignant Progression by Sponging miR-197-3p and Encoding a 185-aa Protein in Triple-Negative Breast Cancer. Molecular Therapy-Nucleic Acids, 18, 88-98.
https://doi.org/10.1016/j.omtn.2019.07.023
[15]  Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017) Extensive Translation of Circular RNAs Driven by N6-Methyladenosine. Cell Research, 27, 626-641.
https://doi.org/10.1038/cr.2017.31
[16]  Tang, S., Nie, X., Ruan, J., Cao, Y., Kang, J. and Ding, C. (2022) Circular RNA CircNFKB1 Promotes Osteoarthritis Progression through Interacting with ENO1 and Sustaining NF-κB Signaling. Cell Death & Disease, 13, Article No. 695.
https://doi.org/10.1038/s41419-022-05148-2
[17]  Liao, H., Zhang, Z., Chen, H., Huang, Y., Liu, Z. and Huang, J. (2021) CircHYBID Regulates Hyaluronan Metabolism in Chondrocytes via hsa-miR-29b-3p/TGF-β1 Axis. Molecular Medicine, 27, Article No. 56.
https://doi.org/10.1186/s10020-021-00319-x
[18]  Saaoud, F., Drummer I.V., C., Shao, Y., Sun, Y., Lu, Y., Xu, K., et al. (2021) Circular RNAs Are a Novel Type of Non-Coding RNAs in ROS Regulation, Cardiovascular Metabolic Inflammations and Cancers. Pharmacology & Therapeutics, 220, Article 107715.
https://doi.org/10.1016/j.pharmthera.2020.107715
[19]  Zhang, J., Cheng, F., Rong, G., Tang, Z. and Gui, B. (2021) Circular RNA Hsa_circ_0005567 Overexpression Promotes M2 Type Macrophage Polarization through miR-492/SOCS2 Axis to Inhibit Osteoarthritis Progression. Bioengineered, 12, 8920-8930.
https://doi.org/10.1080/21655979.2021.1989999
[20]  Zhou, Z., Ma, J., Lu, J., Chen, A. and Zhu, L. (2020) Circular RNA circCDH13 Contributes to the Pathogenesis of Osteoarthritis via circCDH13/miR‐296‐3p/PTEN Axis. Journal of Cellular Physiology, 236, 3521-3535.
https://doi.org/10.1002/jcp.30091
[21]  Zhang, Z., Yang, B., Zhou, S. and Wu, J. (2021) circRNA circ_SEC24A Upregulates DNMT3A Expression by Sponging miR-26b-5p to Aggravate Osteoarthritis Progression. International Immunopharmacology, 99, Article 107957.
https://doi.org/10.1016/j.intimp.2021.107957
[22]  Chen, Z., Huang, Y., Chen, Y., Yang, X., Zhu, J., Xu, G., et al. (2023) CircFNDC3B Regulates Osteoarthritis and Oxidative Stress by Targeting miR-525-5p/HO-1 Axis. Communications Biology, 6, Article No. 200.
https://doi.org/10.1038/s42003-023-04569-9
[23]  Zhang, S., Luo, J. and Zeng, S. (2022) Circ-LRP1B Functions as a Competing Endogenous RNA to Regulate Proliferation, Apoptosis and Oxidative Stress of LPS-Induced Human C28/I2 Chondrocytes. Journal of Bioenergetics and Biomembranes, 54, 93-108.
https://doi.org/10.1007/s10863-022-09932-9
[24]  Shang, J., Li, H., Wu, B., Jiang, N., Wang, B., Wang, D., et al. (2022) CircHIPK3 Prevents Chondrocyte Apoptosis and Cartilage Degradation by Sponging miR‐30a‐3p and Promoting PON2. Cell Proliferation, 55, e13285.
https://doi.org/10.1111/cpr.13285
[25]  Zhang, J., Cheng, F., Rong, G., Tang, Z. and Gui, B. (2020) Hsa_circ_0005567 Activates Autophagy and Suppresses IL-1β-Induced Chondrocyte Apoptosis by Regulating miR-495. Frontiers in Molecular Biosciences, 7, Article 216.
https://doi.org/10.3389/fmolb.2020.00216
[26]  Jiang, S., Tian, G., Yang, Z., Gao, X., Wang, F., Li, J., et al. (2021) Enhancement of Acellular Cartilage Matrix Scaffold by Wharton’s Jelly Mesenchymal Stem Cell-Derived Exosomes to Promote Osteochondral Regeneration. Bioactive Materials, 6, 2711-2728.
https://doi.org/10.1016/j.bioactmat.2021.01.031
[27]  Yan, L., Liu, G. and Wu, X. (2021) The Umbilical Cord Mesenchymal Stem Cell‐derived Exosomal LncRNA H19 Improves Osteochondral Activity through miR‐29b‐3p/FOXO3 Axis. Clinical and Translational Medicine, 11, e255.
https://doi.org/10.1002/ctm2.255
[28]  Guo, Z., Wang, H., Zhao, F., Liu, M., Wang, F., Kang, M., et al. (2021) Exosomal Circ-BRWD1 Contributes to Osteoarthritis Development through the Modulation of miR-1277/TRAF6 Axis. Arthritis Research & Therapy, 23, Article No. 159.
https://doi.org/10.1186/s13075-021-02541-8
[29]  Shen, S., Yang, Y., Shen, P., Ma, J., Fang, B., Wang, Q., et al. (2021) CircPDE4B Prevents Articular Cartilage Degeneration and Promotes Repair by Acting as a Scaffold for RIC8A and Mid1. Annals of the Rheumatic Diseases, 80, 1209-1219.
https://doi.org/10.1136/annrheumdis-2021-219969
[30]  Cheng, S., Nie, Z., Cao, J. and Peng, H. (2022) Circ_0136474 Promotes the Progression of Osteoarthritis by Sponging miR-140-3p and Upregulating MECP2. Journal of Molecular Histology, 54, 1-12.
https://doi.org/10.1007/s10735-022-10100-x
[31]  Liu, Y., Yang, Y., Lin, Y., Wei, B., Hu, X., Xu, L., et al. (2022) N6‐Methyladenosine‐Modified circRNA RERE Modulates Osteoarthritis by Regulating β‐Catenin Ubiquitination and Degradation. Cell Proliferation, 56, e13297.
https://doi.org/10.1111/cpr.13297

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133