全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多级结构碳纳米纤维/硫化铟异质结的构筑及降解四环素性能研究
Construction of Hierarchical Structure CNFs/In2S3 Heterojunction and Study on Degradation Performance of Tetracycline

DOI: 10.12677/ms.2024.1411176, PP. 1631-1638

Keywords: 光催化,CNFs/In2S3,异质结,静电纺丝,四环素降解
Photocatalysis
, CNFs/In2S3, Heterojunction, Electrospinning, Degradation of Tetracycline

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用静电纺丝技术结合水热法构筑碳纳米纤维(CNFs)复合硫化铟(In2S3)异质结构。二维结构的In2S3纳米片被均匀地固载到一维结构的CNFs上,制备的多级结构的CNFs/In2S3复合纳米纤维异质结彼此交错形成开放的三维网络纳米结构。在模拟太阳光的照射下,CNFs/In2S3异质结光催化剂降解抗生素(四环素)在120 min时的去除率达到78.5%。CNFs/In2S3异质结对四环素的移除率约是In2S3粉末的2.02倍,是CNFs的5.27倍。催化剂优异的光催化性能可能与其特殊的异质结构有关,结合光电流数据及阻抗谱分析CNFs/In2S3异质结的构建显著增强了界面电荷的分离和转移效率。
The heterogeneous structure of carbon nanofibers (CNFs) with indium sulfide (In2S3) was constructed by electrospinning combined with a hydrothermal method. Two-dimensional In2S3 nanosheets were uniformly supported on one-dimensional CNFs, and the prepared multilevel CNFs/In2S3 composite nanofiber heterojunctions interleaved with each other to form open three-dimensional network nanostructures. Under the irradiation of simulated sunlight, the removal rate of CNFs/In2S3 heterojunction photocatalyst for degradation of antibiotics (tetracycline) reached 78.5% at 120 min. The removal rate of tetracycline from CNFs/In2S3 heterojunction was 2.02 times that of In2S3 powder and 5.27 times that of CNFs. The excellent photocatalytic performance of the catalyst may be related to its special heterogeneous structure. The construction of CNFs/In2S3 heterojunction combined with photocurrent data and impedance spectrum analysis significantly enhanced the separation and transfer efficiency of interfacial charge.

References

[1]  Li, C., Tian, Q., Zhang, Y., Li, Y., Yang, X., Zheng, H., et al. (2022) Sequential Combination of Photocatalysis and Microalgae Technology for Promoting the Degradation and Detoxification of Typical Antibiotics. Water Research, 210, Article ID: 117985.
https://doi.org/10.1016/j.watres.2021.117985
[2]  Xiao, Z., Feng, X., Shi, H., Zhou, B., Wang, W. and Ren, N. (2022) Why the Cooperation of Radical and Non-Radical Pathways in PMS System Leads to a Higher Efficiency than a Single Pathway in Tetracycline Degradation. Journal of Hazardous Materials, 424, Article ID: 127247.
https://doi.org/10.1016/j.jhazmat.2021.127247
[3]  Liu, H., Huo, W., Zhang, T.C., Ouyang, L. and Yuan, S. (2022) Photocatalytic Removal of Tetracycline by a Z-Scheme Heterojunction of Bismuth Oxyiodide/Exfoliated g-C3N4: Performance, Mechanism, and Degradation Pathway. Materials Today Chemistry, 23, Article ID: 100729.
https://doi.org/10.1016/j.mtchem.2021.100729
[4]  Zhao, F., Chen, L., Yen, H., Li, G., Sun, L. and Yang, L. (2020) An Innovative Modeling Approach of Linking Land Use Patterns with Soil Antibiotic Contamination in Peri-Urban Areas. Environment International, 134, Article ID:105327.
https://doi.org/10.1016/j.envint.2019.105327
[5]  Dong, Y., Yi, C., Yang, S., Wang, J., Chen, P., Liu, X., et al. (2019) A Substrate-Free Graphene Oxide-Based Micromotor for Rapid Adsorption of Antibiotics. Nanoscale, 11, 4562-4570.
https://doi.org/10.1039/c8nr09229j
[6]  Amiri, O., Abdalrahman, A., Jangi, G., Aziz Ahmed, H., Hassan Hussein, S., Joshaghani, M., et al. (2022) Convert Mechanical Energy to Chemical Energy to Effectively Remove Organic Pollutants by Using PTO Catalyst. Separation and Purification Technology, 283, Article ID: 120235.
https://doi.org/10.1016/j.seppur.2021.120235
[7]  Amiri, O., Salar, K., Othman, P., Rasul, T., Faiq, D. and Saadat, M. (2020) Purification of Wastewater by the Piezo-Catalyst Effect of PbTiO3 Nanostructures under Ultrasonic Vibration. Journal of Hazardous Materials, 394, Article ID: 122514.
https://doi.org/10.1016/j.jhazmat.2020.122514
[8]  Zhou, C., Lai, C., Huang, D., Zeng, G., Zhang, C., Cheng, M., et al. (2018) Highly Porous Carbon Nitride by Supramolecular Preassembly of Monomers for Photocatalytic Removal of Sulfamethazine under Visible Light Driven. Applied Catalysis B: Environmental, 220, 202-210.
https://doi.org/10.1016/j.apcatb.2017.08.055
[9]  Wen, X., Niu, C., Zhang, L., Liang, C. and Zeng, G. (2018) A Novel Ag2O/CeO2 Heterojunction Photocatalysts for Photocatalytic Degradation of Enrofloxacin: Possible Degradation Pathways, Mineralization Activity and an in Depth Mechanism Insight. Applied Catalysis B: Environmental, 221, 701-714.
https://doi.org/10.1016/j.apcatb.2017.09.060
[10]  Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., et al. (2017) Amorphous Mno2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustainable Chemistry & Engineering, 5, 5049-5058.
https://doi.org/10.1021/acssuschemeng.7b00434
[11]  Chaudhari, N., Mandal, L., Game, O., Warule, S., Phase, D., Jadkar, S., et al. (2015) Dramatic Enhancement in Photoresponse of β-In2S3 through Suppression of Dark Conductivity by Synthetic Control of Defect-Induced Carrier Compensation. ACS Applied Materials & Interfaces, 7, 17671-17681.
https://doi.org/10.1021/acsami.5b02885
[12]  Yang, M., Weng, B. and Xu, Y. (2013) Improving the Visible Light Photoactivity of In2S3-Graphene Nanocomposite via a Simple Surface Charge Modification Approach. Langmuir, 29, 10549-10558.
https://doi.org/10.1021/la4020493
[13]  Li, J., Ma, Y., Ye, Z., Zhou, M., Wang, H., Ma, C., et al. (2017) Fast Electron Transfer and Enhanced Visible Light Photocatalytic Activity Using Multi-Dimensional Components of Carbon Quantum Dots@3d Daisy-Like In2S3/Single-Wall Carbon Nanotubes. Applied Catalysis B: Environmental, 204, 224-238.
https://doi.org/10.1016/j.apcatb.2016.11.021
[14]  Shamraiz, U., Elizbit,, Badshah, A., Alfantazi, A., Hussain, H., Raza, B., et al. (2021) Solvent Mediated Fabrication of Ditched Hollow Indium Sulfide (In2S3) Spheres for Overall Electrocatalytic Water Splitting. Journal of The Electrochemical Society, 168, Article ID: 066510.
https://doi.org/10.1149/1945-7111/ac0605
[15]  Mishra, S.R., Gadore, V. and Ahmaruzzaman, M. (2024) An Overview of In2S3 and In2S3-Based Photocatalyst: Characteristics, Synthesis, Modifications, Design Strategies, and Catalytic Environmental Application. Journal of Environmental Chemical Engineering, 12, Article ID: 113449.
https://doi.org/10.1016/j.jece.2024.113449
[16]  Chen, L., Zhang, X., Liang, H., Kong, M., Guan, Q., Chen, P., et al. (2012) Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano, 6, 7092-7102.
https://doi.org/10.1021/nn302147s
[17]  Zhang, P., Shao, C., Li, X., Zhang, M., Zhang, X., Su, C., et al. (2013) An Electron-Rich Free-Standing Carbon@Au Core-Shell Nanofiber Network as a Highly Active and Recyclable Catalyst for the Reduction of 4-Nitrophenol. Physical Chemistry Chemical Physics, 15, 10453-10458.
https://doi.org/10.1039/c3cp50917f
[18]  Li, W., Zeng, L., Yang, Z., Gu, L., Wang, J., Liu, X., et al. (2014) Free-Standing and Binder-Free Sodium-Ion Electrodes with Ultralong Cycle Life and High Rate Performance Based on Porous Carbon Nanofibers. Nanoscale, 6, 693-698.
https://doi.org/10.1039/c3nr05022j
[19]  Yuan, X., Jiang, L., Liang, J., Pan, Y., Zhang, J., Wang, H., et al. (2019) In-Situ Synthesis of 3D Microsphere-Like In2S3/InVO4 Heterojunction with Efficient Photocatalytic Activity for Tetracycline Degradation under Visible Light Irradiation. Chemical Engineering Journal, 356, 371-381.
https://doi.org/10.1016/j.cej.2018.09.079

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133