|
Material Sciences 2024
陶瓷核壳结构材料:制备方法与应用领域综述
|
Abstract:
核壳结构材料可使单种材料同时具备多重优异性能,被广泛应用于科学和工程领域。其中,陶瓷材料因其优异性能得到了研究者的广泛关注。本综述详细地介绍了陶瓷核壳结构材料的常用制备方法以及由陶瓷核壳结构组成的材料在各个领域中的具体应用情况。通过对这些材料的制备方法和应用领域的系统分析,为相关领域的研究和发展提供了有价值的参考和启示。
Core-shell structural materials can make a single material with multiple excellent properties at the same time and are widely used in science and engineering fields. Among them, ceramic materials have been widely concerned by researchers because of their excellent properties. This review introduces in detail the common preparation methods of ceramic core-shell structure materials and the specific application of materials composed of ceramic core-shell structure in various fields. Through the systematic analysis of the preparation methods and application fields of these materials, it provides valuable reference and enlightenment for the research and development of related fields.
[1] | Dong, B., Cao, L., Su, G., Liu, W., Qu, H. and Jiang, D. (2009) Synthesis and Characterization of the Water-Soluble Silica-Coated ZnS: Mn Nanoparticles as Fluorescent Sensor for Cu2+ Ions. Journal of Colloid and Interface Science, 339, 78-82. https://doi.org/10.1016/j.jcis.2009.07.039 |
[2] | Salavati-Niasari, M., Davar, F. and Mir, N. (2008) Synthesis and Characterization of Metallic Copper Nanoparticles via Thermal Decomposition. Polyhedron, 27, 3514-3518. https://doi.org/10.1016/j.poly.2008.08.020 |
[3] | Deshmukh, G.S., Pathak, S.U., Peshwe, D.R. and Ekhe, J.D. (2010) Effect of Uncoated Calcium Carbonate and Stearic Acid Coated Calcium Carbonate on Mechanical, Thermal and Structural Properties of Poly(Butylene Terephthalate) (PBT)/Calcium Carbonate Composites. Bulletin of Materials Science, 33, 277-284. https://doi.org/10.1007/s12034-010-0043-7 |
[4] | Caruso, R.A., Susha, A. and Caruso, F. (2001) Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chemistry of Materials, 13, 400-409. https://doi.org/10.1021/cm001175a |
[5] | Ballauff, M. and Lu, Y. (2007) “Smart” Nanoparticles: Preparation, Characterization and Applications. Polymer, 48, 1815-1823. https://doi.org/10.1016/j.polymer.2007.02.004 |
[6] | Ghosh Chaudhuri, R. and Paria, S. (2011) Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 112, 2373-2433. https://doi.org/10.1021/cr100449n |
[7] | Koch, U., Fojtik, A., Weller, H. and Henglein, A. (1985) Photochemistry of Semiconductor Colloids. Preparation of Extremely Small ZnO Particles, Fluorescence Phenomena and Size Quantization Effects. Chemical Physics Letters, 122, 507-510. https://doi.org/10.1016/0009-2614(85)87255-9 |
[8] | Youn, H.C., Baral, S. and Fendler, J.H. (1988) Dihexadecyl Phosphate, Vesicle-Stabilized and in situ Generated Mixed Cadmium Sulfide and Zinc Sulfide Semiconductor Particles: Preparation and Utilization for Photosensitized Charge Separation and Hydrogen Generation. The Journal of Physical Chemistry, 92, 6320-6327. https://doi.org/10.1021/j100333a029 |
[9] | Henglein, A. (1989) Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles. Chemical Reviews, 89, 1861-1873. https://doi.org/10.1021/cr00098a010 |
[10] | Hoener, C.F., Allan, K.A., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T.E., et al. (1992) Demonstration of a Shell-Core Structure in Layered Cadmium Selenide-Zinc Selenide Small Particles by X-Ray Photoelectron and Auger Spectroscopies. The Journal of Physical Chemistry, 96, 3812-3817. https://doi.org/10.1021/j100188a045 |
[11] | Zhou, H.S., Sasahara, H., Honma, I., Komiyama, H. and Haus, J.W. (1994) Coated Semiconductor Nanoparticles: The CdS/PbS System’s Photoluminescence Properties. Chemistry of Materials, 6, 1534-1541. https://doi.org/10.1021/cm00045a010 |
[12] | Balakrishnan, S., Bonder, M.J. and Hadjipanayis, G.C. (2009) Particle Size Effect on Phase and Magnetic Properties of Polymer-Coated Magnetic Nanoparticles. Journal of Magnetism and Magnetic Materials, 321, 117-122. https://doi.org/10.1016/j.jmmm.2008.08.055 |
[13] | Salgueiriño‐Maceira, V. and Correa‐Duarte, M.A. (2007) Increasing the Complexity of Magnetic Core/Shell Structured Nanocomposites for Biological Applications. Advanced Materials, 19, 4131-4144. https://doi.org/10.1002/adma.200700418 |
[14] | Caruso, F. (2001) Nanoengineering of Particle Surfaces. Advanced Materials, 13, 11-22. https://doi.org/10.1002/1521-4095(200101)13:1<11::aid-adma11>3.0.co;2-n |
[15] | Daniel, M. and Astruc, D. (2003) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 104, 293-346. https://doi.org/10.1021/cr030698+ |
[16] | Phadtare, S., Kumar, A., Vinod, V.P., Dash, C., Palaskar, D.V., Rao, M., et al. (2003) Direct Assembly of Gold Nanoparticle “Shells” on Polyurethane Microsphere “Cores” and Their Application as Enzyme Immobilization Templates. Chemistry of Materials, 15, 1944-1949. https://doi.org/10.1021/cm020784a |
[17] | Hoener, C.F., Allan, K.A., Bard, A.J., Campion, A., Fox, M.A., Mallouk, T.E., et al. (1992) Demonstration of a Shell-Core Structure in Layered Cadmium Selenide-Zinc Selenide Small Particles by X-Ray Photoelectron and Auger Spectroscopies. The Journal of Physical Chemistry, 96, 3812-3817. https://doi.org/10.1021/j100188a045 |
[18] | Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., et al. (1990) Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. Journal of the American Chemical Society, 112, 1327-1332. https://doi.org/10.1021/ja00160a005 |
[19] | Qi, L., Ma, J., Cheng, H. and Zhao, Z. (1996) Synthesis and Characterization of Mixed CdS ZnS Nanoparticles in Reverse Micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 111, 195-202. https://doi.org/10.1016/0927-7757(96)03545-5 |
[20] | Mews, A., Eychmueller, A., Giersig, M., Schooss, D. and Weller, H. (1994) Preparation, Characterization, and Photophysics of the Quantum Dot Quantum Well System Cadmium Sulfide/Mercury Sulfide/Cadmium Sulfide. The Journal of Physical Chemistry, 98, 934-941. https://doi.org/10.1021/j100054a032 |
[21] | Kamat, P.V. and Shanghavi, B. (1997) Interparticle Electron Transfer in Metal/Semiconductor Composites. Picosecond Dynamics of CdS-Capped Gold Nanoclusters. The Journal of Physical Chemistry B, 101, 7675-7679. https://doi.org/10.1021/jp9709464 |
[22] | Scodeller, P., Flexer, V., Szamocki, R., Calvo, E.J., Tognalli, N., Troiani, H., et al. (2008) Wired-Enzyme Core-Shell Au Nanoparticle Biosensor. Journal of the American Chemical Society, 130, 12690-12697. https://doi.org/10.1021/ja802318f |
[23] | Dresco, P.A., Zaitsev, V.S., Gambino, R.J. and Chu, B. (1999) Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles. Langmuir, 15, 1945-1951. https://doi.org/10.1021/la980971g |
[24] | Hota, G., Idage, S.B. and Khilar, K.C. (2007) Characterization of Nano-Sized CdS-Ag2S Core-Shell Nanoparticles Using XPS Technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293, 5-12. https://doi.org/10.1016/j.colsurfa.2006.06.036 |
[25] | Li, T., Moon, J., Morrone, A.A., Mecholsky, J.J., Talham, D.R. and Adair, J.H. (1999) Preparation of Ag/SiO2 Nanosize Composites by a Reverse Micelle and Sol-Gel Technique. Langmuir, 15, 4328-4334. https://doi.org/10.1021/la970801o |
[26] | Cui, S., Yi, Z., Xu, Y., Huang, J., Xu, J., Luo, J., et al. (2022) Study of the Core-Shell Structure MoSi2@ Al2O3 Powder Prepared by the Sol-Gel Method in a Low-Vacuum Atmosphere. Surface and Coatings Technology, 432, Article 128086. https://doi.org/10.1016/j.surfcoat.2022.128086 |
[27] | Zhao, J., Liu, M., Chang, J., Shao, Y., Liu, B. and Liu, R. (2020) Controllable Synthesis of SiC@Graphene Core‐Shell Nanoparticles via Fluidized Bed Chemical Vapor Deposition. Journal of the American Ceramic Society, 103, 5579-5585. https://doi.org/10.1111/jace.17284 |
[28] | Hwang, C., DiPietro, S., Xie, K.Y., Yang, Q., Celik, A.M., Khan, A.U., et al. (2019) Small Amount TiB2 Addition into B4C through Sputter Deposition and Hot Pressing. Journal of the American Ceramic Society, 102, 4421-4426. https://doi.org/10.1111/jace.16457 |
[29] | Yao, W., Yan, J., Li, X., Chen, P. and Zhu, B. (2022) Enhancement Mechanical Properties of B4C Ceramics with the Core-Shell Structure Powders. In: Chen, M., Giorgetti, M., Li, Z., Chen, Z., Jin, B. and Agarwal, R.K., Eds., Advances in Machinery, Materials Science and Engineering Application, IOS Press, 170-175. https://doi.org/10.3233/atde220433 |
[30] | Castellano-Soria, A., López-Sánchez, J., Granados-Miralles, C., Varela, M., Navarro, E., González, C., et al. (2022) Novel One-Pot Sol-Gel Synthesis Route of Fe3C/Few-Layered Graphene Core/Shell Nanoparticles Embedded in a Carbon Matrix. Journal of Alloys and Compounds, 902, Article 163662. https://doi.org/10.1016/j.jallcom.2022.163662 |
[31] | He, Z., Tu, R., Katsui, H. and Goto, T. (2013) Synthesis of SiC/SiO2 Core-Shell Powder by Rotary Chemical Vapor Deposition and Its Consolidation by Spark Plasma Sintering. Ceramics International, 39, 2605-2610. https://doi.org/10.1016/j.ceramint.2012.09.025 |
[32] | Liu, C., Yang, Y., Lv, P., Guo, J., Xiang, M. and Zhu, Q. (2019) Fabrication of Core‐Shell Structured TiC-Fe Composite Powders by Fluidized Bed Chemical Vapor Deposition. Journal of the American Ceramic Society, 102, 4470-4479. https://doi.org/10.1111/jace.16351 |
[33] | Tang, H., Huang, Z. and Tan, S. (2006). PVD Sic and PVD Si Coatings on RB Sic for Surface Modification. 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Xi’an, 2-5 November 2005, 69-74. https://doi.org/10.1117/12.674197 |
[34] | Tang, W.J., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Wang, H., Wang, Y.C., et al. (2006) Fabrication and Characteristics of TiB2/Al2O3 Core/Shell Particles by Hybridization. Powder Technology, 167, 117-123. https://doi.org/10.1016/j.powtec.2006.06.007 |
[35] | Li, Z., Zhang, S. and Lee, W.E. (2007) Molten Salt Synthesis of LaAlO3 Powder at Low Temperatures. Journal of the European Ceramic Society, 27, 3201-3205. https://doi.org/10.1016/j.jeurceramsoc.2007.01.008 |
[36] | Li, Z., Lee, W.E. and Zhang, S. (2007) Low‐Temperature Synthesis of CaZrO3 Powder from Molten Salts. Journal of the American Ceramic Society, 90, 364-368. https://doi.org/10.1111/j.1551-2916.2006.01383.x |
[37] | Jayaseelan, D.D., Zhang, S., Hashimoto, S. and Lee, W.E. (2007) Template Formation of Magnesium Aluminate (MgAl2O4) Spinel Microplatelets in Molten Salt. Journal of the European Ceramic Society, 27, 4745-4749. https://doi.org/10.1016/j.jeurceramsoc.2007.03.027 |
[38] | Hu, Y., Cheng, Z., Gao, J., Liu, Y., Yan, P., Ding, Q., et al. (2024) Strong and Robust Core-Shell Ceramic Fibers Composed of Highly Compacted Nanoparticles for Multifunctional Electronic Skin. Small, 20, Article 2404080. https://doi.org/10.1002/smll.202404080 |
[39] | Zhang, X., Zhang, Y., Guo, L., Liu, B., Wang, Y., Li, H., et al. (2024) Ablation Resistance of ZrC Coating Modified by Polymer-Derived SiHfOC Ceramic Microspheres at Ultrahigh Temperature. Journal of Materials Science & Technology, 182, 119-131. https://doi.org/10.1016/j.jmst.2023.09.031 |
[40] | Yu, Z., Li, F. and Zhu, Q. (2022) Single-Source-Precursor Synthesis and Phase Evolution of NbC-SiC-C Ceramic Nanocomposites with Core-Shell Structured NbC@C and SiC@C Nanoparticles. Advanced Powder Materials, 1, Article 100009. https://doi.org/10.1016/j.apmate.2021.09.009 |
[41] | Zhang, J., Wang, Z., Luo, J., Wang, S., Liang, B. and Chen, W. (2023) Microstructure, Properties and Toughening Mechanisms of MoSi2@ZrO2 Core Shell Composites Prepared by Spark Plasma Sintering. Materials Characterization, 195, Article 112510. https://doi.org/10.1016/j.matchar.2022.112510 |
[42] | Raja, N., Park, H., Choi, Y. and Yun, H. (2021) Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration. ACS Biomaterials Science & Engineering, 7, 1123-1133. https://doi.org/10.1021/acsbiomaterials.0c01341 |
[43] | Hassanzadeh-Tabrizi, S.A., Norbakhsh, H., Pournajaf, R. and Tayebi, M. (2021) Synthesis of Mesoporous Cobalt Ferrite/Hydroxyapatite Core-Shell Nanocomposite for Magnetic Hyperthermia and Drug Release Applications. Ceramics International, 47, 18167-18176. https://doi.org/10.1016/j.ceramint.2021.03.135 |
[44] | Tang, Z., Wu, K., Li, J. and Huang, S. (2020) Optimized Dual-Function Varistor-Capacitor Ceramics of Core-Shell Structured xBi2/3Cu3Ti4O12/(1-x)CaCu3Ti4O12 Composites. Journal of the European Ceramic Society, 40, 3437-3444. https://doi.org/10.1016/j.jeurceramsoc.2020.03.034 |
[45] | De Almeida-Didry, S., Merad, S., Autret-Lambert, C., Nomel, M.M., Lucas, A. and Gervais, F. (2020) A Core-Shell Synthesis of CaCu3Ti4O12 (CCTO) Ceramics Showing Colossal Permittivity and Low Electric Losses for Application in Capacitors. Solid State Sciences, 109, Article 106431. https://doi.org/10.1016/j.solidstatesciences.2020.106431 |