全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatial Distribution and Potential Health Risk Assessment of Fluoride and Nitrate Concentrations in Groundwater from Mbour-Fatick Area, Western Central Senegal

DOI: 10.4236/jwarp.2024.1611039, PP. 695-719

Keywords: Fluoride, Nitrate, Groundwater Quality, Human Health Risk, Western Central Senegal

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to delineate the spatial distribution of nitrate and fluoride in groundwater and to estimate the non-carcinogenic risks using the human health risk assessment model recommended by the United States Environmental Protection Agency (USEPA). Forty-two samples were collected from wells and boreholes and analyzed for nitrate, fluoride and other water quality parameters. Results of the study indicate that fluoride and nitrate concentrations vary respectively from 0.13 to 9.41 mg·L?1 and from 0.13 to 432.24 mg·L?1 with respective median values of 2.65 and 13.85. About 69% of groundwater samples exceed the allowable limit (1.5 mg·L?1) of fluoride for drinking water. Spatial distribution of fluoride shows high concentrations in certain localities with values ranging from 6.74 mg·L?1 to 9.41 mg·L?1. The spatial distribution of nitrate indicates that the majority of water samples (87.18%) have nitrate concentrations lower than the World Health Organization (WHO) standard guideline value of 50 mg·L?1. Assessment of non-carcinogenic risks associated with intake of polluted groundwater in local populations indicates that 82.05% and 87.18% of groundwater samples have a THI > 1 in adults and children, respectively. However, the highest THI value (15.87) was recorded for children suggesting that children face greater non-carcinogenic risks than adults. The results of this study can be used as a support by the policymakers and practitioners to develop appropriate policies for effective and sustainable groundwater management and to monitor human health implications.

References

[1]  Chen, J., Wu, H., Qian, H. and Gao, Y. (2016) Assessing Nitrate and Fluoride Contaminants in Drinking Water and Their Health Risk of Rural Residents Living in a Semiarid Region of Northwest China. Exposure and Health, 9, 183-195.
https://doi.org/10.1007/s12403-016-0231-9
[2]  Narsimha, A. and Sudarshan, V. (2016) Assessment of Fluoride Contamination in Groundwater from Basara, Adilabad District, Telangana State, India. Applied Water Science, 7, 2717-2725.
https://doi.org/10.1007/s13201-016-0489-x
[3]  Narsimha, A. and Sudarshan, V. (2016) Contamination of Fluoride in Groundwater and Its Effect on Human Health: A Case Study in Hard Rock Aquifers of Siddipet, Telangana State, India. Applied Water Science, 7, 2501-2512.
https://doi.org/10.1007/s13201-016-0441-0
[4]  Adimalla, N., Vasa, S.K. and Li, P. (2018) Evaluation of Groundwater Quality, Peddavagu in Central Telangana (PCT), South India: An Insight of Controlling Factors of Fluoride Enrichment. Modeling Earth Systems and Environment, 4, 841-852.
https://doi.org/10.1007/s40808-018-0443-z
[5]  Adimalla, N., Li, P. and Qian, H. (2018) Evaluation of Groundwater Contamination for Fluoride and Nitrate in Semi-Arid Region of Nirmal Province, South India: A Special Emphasis on Human Health Risk Assessment (HHRA). Human and Ecological Risk Assessment: An International Journal, 25, 1107-1124.
https://doi.org/10.1080/10807039.2018.1460579
[6]  Adimalla, N., Li, P. and Venkatayogi, S. (2018) Hydrogeochemical Evaluation of Groundwater Quality for Drinking and Irrigation Purposes and Integrated Interpretation with Water Quality Index Studies. Environmental Processes, 5, 363-383.
https://doi.org/10.1007/s40710-018-0297-4
[7]  Ayenew, T. (2007) The Distribution and Hydrogeological Controls of Fluoride in the Groundwater of Central Ethiopian Rift and Adjacent Highlands. Environmental Geology, 54, 1313-1324.
https://doi.org/10.1007/s00254-007-0914-4
[8]  Fantong, W.Y., Satake, H., Ayonghe, S.N., Suh, E.C., Adelana, S.M.A., Fantong, E.B.S., et al. (2009) Geochemical Provenance and Spatial Distribution of Fluoride in Groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: Implications for Incidence of Fluorosis and Optimal Consumption Dose. Environmental Geochemistry and Health, 32, 147-163.
https://doi.org/10.1007/s10653-009-9271-4
[9]  Dibal, H.U., Schoeneich, K., Garba, I., Lar, U.A. and Bala, E.A. (2012) Overview of Fluoride Distribution in Major Aquifer Units of Northern Nigeria. Health, 4, 1287-1294.
https://doi.org/10.4236/health.2012.412189
[10]  Jacks, G., Bhattacharya, P., Chaudhary, V. and Singh, K.P. (2005) Controls on the Genesis of Some High-Fluoride Groundwaters in India. Applied Geochemistry, 20, 221-228.
https://doi.org/10.1016/j.apgeochem.2004.07.002
[11]  Dey, R.K., Swain, S.K., Mishra, S., Sharma, P., Patnaik, T., Singh, V.K., et al. (2011) Hydrogeochemical Processes Controlling the High Fluoride Concentration in Groundwater: A Case Study at the Boden Block Area, Orissa, India. Environmental Monitoring and Assessment, 184, 3279-3291.
https://doi.org/10.1007/s10661-011-2188-2
[12]  Li, P., Qian, H., Wu, J., Chen, J., Zhang, Y. and Zhang, H. (2013) Occurrence and Hydrogeochemistry of Fluoride in Alluvial Aquifer of Weihe River, China. Environmental Earth Sciences, 71, 3133-3145.
https://doi.org/10.1007/s12665-013-2691-6
[13]  Wu, J., Li, P. and Qian, H. (2015) Hydrochemical Characterization of Drinking Groundwater with Special Reference to Fluoride in an Arid Area of China and the Control of Aquifer Leakage on Its Concentrations. Environmental Earth Sciences, 73, 8575-8588.
https://doi.org/10.1007/s12665-015-4018-2
[14]  Kim, Y., Kim, J. and Kim, K. (2010) Geochemical Characteristics of Fluoride in Groundwater of Gimcheon, Korea: Lithogenic and Agricultural Origins. Environmental Earth Sciences, 63, 1139-1148.
https://doi.org/10.1007/s12665-010-0789-7
[15]  Battaleb-Looie, S. and Moor, F. (2010) A Study of Fluoride Groundwater Occurrence in Posht-e-Kooh-e-Dashtestan, South of Iran. World Applied Sciences Journal, 8, 1317-1321.
[16]  Amini, H., Haghighat, G.A., Yunesian, M., Nabizadeh, R., Mahvi, A.H., Dehghani, M.H., et al. (2015) Spatial and Temporal Variability of Fluoride Concentrations in Groundwater Resources of Larestan and Gerash Regions in Iran from 2003 to 2010. Environmental Geochemistry and Health, 38, 25-37.
https://doi.org/10.1007/s10653-015-9676-1
[17]  Sharma, C., Mahajan, A. and Kumar Garg, U. (2016) Fluoride and Nitrate in Groundwater of South-Western Punjab, India—Occurrence, Distribution and Statistical Analysis. Desalination and Water Treatment, 57, 3928-3939.
https://doi.org/10.1080/19443994.2014.989415
[18]  Rao, N.S., Dinakar, A., Rao, P.S., Rao, P.N., Madhnure, P., Prasad, K.M., et al. (2016) Geochemical Processes Controlling Fluoride-Bearing Groundwater in the Granitic Aquifer of a Semi-Arid Region. Journal of the Geological Society of India, 88, 350-356.
https://doi.org/10.1007/s12594-016-0497-3
[19]  Singh, C.K., Kumari, R., Singh, N., Mallick, J. and Mukherjee, S. (2012) Fluoride Enrichment in Aquifers of the Thar Desert: Controlling Factors and Its Geochemical Modelling. Hydrological Processes, 27, 2462-2474.
https://doi.org/10.1002/hyp.9247
[20]  Adimalla, N. and Li, P. (2018) Occurrence, Health Risks, and Geochemical Mechanisms of Fluoride and Nitrate in Groundwater of the Rock-Dominant Semi-Arid Region, Telangana State, India. Human and Ecological Risk Assessment: An International Journal, 25, 81-103.
https://doi.org/10.1080/10807039.2018.1480353
[21]  Adimalla, N. (2019) Spatial Distribution, Exposure, and Potential Health Risk Assessment from Nitrate in Drinking Water from Semi-Arid Region of South India. Human and Ecological Risk Assessment: An International Journal, 26, 310-334.
https://doi.org/10.1080/10807039.2018.1508329
[22]  WHO (2011) Guidelines for Drinking Water Quality. 4rd Edition, WHO.
[23]  Ayoob, S. and Gupta, A.K. (2006) Fluoride in Drinking Water: A Review on the Status and Stress Effects. Critical Reviews in Environmental Science and Technology, 36, 433-487.
https://doi.org/10.1080/10643380600678112
[24]  Young, S.M., Pitawala, A. and Ishiga, H. (2010) Factors Controlling Fluoride Contents of Groundwater in North-Central and Northwestern Sri Lanka. Environmental Earth Sciences, 63, 1333-1342.
https://doi.org/10.1007/s12665-010-0804-z
[25]  Subba Rao, N. (2017) Controlling Factors of Fluoride in Groundwater in a Part of South India. Arabian Journal of Geosciences, 10, Article No. 524.
https://doi.org/10.1007/s12517-017-3291-7
[26]  Aravinthasamy, P., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K. and Anand, B. (2019) Geochemical Evaluation of Fluoride Contamination in Groundwater from Shanmuganadhi River Basin, South India: Implication on Human Health. Environmental Geochemistry and Health, 42, 1937-1963.
https://doi.org/10.1007/s10653-019-00452-x
[27]  Ahada, C.P.S. and Suthar, S. (2017) Assessment of Human Health Risk Associated with High Groundwater Fluoride Intake in Southern Districts of Punjab, India. Exposure and Health, 11, 267-275.
https://doi.org/10.1007/s12403-017-0268-4
[28]  Ndong, M., Diop, C.M., Samb, F., Ngom, E., Thiam, E. and Sock, O. (2008) Adsorp-tion du fluor par les os calcines: Etude comparative de deux methodes de dimen-sionnement des colonnes d’adsorption. Journal des Sciences et Technologie, 7, 39-45.
[29]  Travi, Y. (1993) Hydrogeologie et hydrochimie des aquiferes du Senegal. Hydroge-ochimie du fluor dans les eaux souterraines. Sciences Geologiques. Memoire, 95, Institut de Geologie—Universite Louis-Pasteur, 3-158.
[30]  Travi, Y. and Le Coustour, E. (1982) Fluorose dentaire et eaux souterraines: L’exemple du Senegal. Eau du Quebec, 15, 9-12.
[31]  Lagaude, A., Kirsche, C. and Travi, Y. (1988) Defluoruration des eaux souterraines au Senegal. Travaux preliminaires sur l’eau du forage de Fatick. T.S.M-l’eau, septembre 1988, n˚9, 449-452.
[32]  Cushing, E.M., Kantrowitz, I.H. and Taylor, K.R. (1973) Water Resources of the Delmarva Peninsular. US Geological Survey Professional Paper 822.
[33]  Chen, J., Wu, H. and Qian, H. (2016) Groundwater Nitrate Contamination and Associated Health Risk for the Rural Communities in an Agricultural Area of Ningxia, Northwest China. Exposure and Health, 8, 349-359.
https://doi.org/10.1007/s12403-016-0208-8
[34]  Ahada, C.P.S. and Suthar, S. (2018) Groundwater Nitrate Contamination and Associated Human Health Risk Assessment in Southern Districts of Punjab, India. Environmental Science and Pollution Research, 25, 25336-25347.
https://doi.org/10.1007/s11356-018-2581-2
[35]  Diedhiou, M. (2011) Approche multitraceur geochimique et isotopique à l’identification des sources de la pollution nitratee et des processus de nitrification/denitrification dans la nappe de Thiaroye. These de Doctorat Unique, Universite Cheikh Anta Diop de Dakar, 210 p.
[36]  Armijo, R., Orellana, M., Medina, E., Coulson, A.H., Sayre, J.W. and Detels, R. (1981) Epidemiology of Gastric Cancer in Chile: I—Case-Control Study. International Journal of Epidemiology, 10, 53-56.
https://doi.org/10.1093/ije/10.1.53
[37]  Diédhiou, M., Ndoye, S., Celle, H., Faye, S., Wohnlich, S. and Le Coustumer, P. (2023) Hydrogeochemical Appraisal of Groundwater Quality and Its Suitability for Drinking and Irrigation Purposes in the West Central Senegal. Water, 15, Article No. 1772.
https://doi.org/10.3390/w15091772
[38]  Ndoye, S., Diedhiou, M., Celle, H., Faye, S., Baalousha, M. and Le Coustumer, P. (2023) Hydrogeochemical Characterization of Groundwater in a Coastal Area, Central Western Senegal. Frontiers in Water, 4, Article ID: 1097396.
https://doi.org/10.3389/frwa.2022.1097396
[39]  Sarr, R. (1982) Etude hydrogeologique de la region de Joal-Fadiouth (Senegal). These 3eme Cycle, Univ. C. A. Diop, D192 p.
[40]  Saint-Marc, P. and Sarr, R. (1984) Précisions biostratigraphiques et paléoenvironnementales sur le sommet du Paléocène et la base de l’Eocène de la région de Mbour-Joal (Sénégal). Journal of African Earth Sciences (1983), 2, 203-207.
https://doi.org/10.1016/s0731-7247(84)80015-4
[41]  Monciardini, C. (1966) La sedimentation eocene au Senegal. Mem. Bur. Rech. Geol. Min. Orleans 43, 65 p.
[42]  Sarr, R. (1999) Le Paleocene de la region de Mbour-Joal (Senegal Occidental): Bio-stratigraphie, etude systematique des ostracodes, paleoenvironnement. Revue de Paleobiologie, 18, 1-29.
[43]  Pitaud, G. (1980) Etudes hydrogeologiques des calcaires paleocenes de la region de Mbour. Evaluation des ressources en eau et possibilites d’exploitation. Rapport de synthese, Dir. Gen. Hydraul. Equip. Rural, 01-80-HG-DEH, 52 p.
[44]  Tine, A.K., Ba, M.I., Gladima-Siby, A.S., Essouli, O.F., Faye, A. and Sarr, B. (2011) Reactualisation de la situation hydrogeologique des aquiferes du maastrichtien et du paleoceene de la region de Mbour, Senegal. Journal des Sciences et Technologies, 9, 23-32.
[45]  Geohydraulique and OMS (1972) Approvisionnement en eau et assainissements de Dakar et ses environs. Etude des eaux souterraines. Projet Sénégal 3201 (EX 22), Tome II et III.
[46]  Madioune, D.H., Faye, S., Orban, P., Brouyère, S., Dassargues, A., Mudry, J., et al. (2014) Application of Isotopic Tracers as a Tool for Understanding Hydrodynamic Behavior of the Highly Exploited Diass Aquifer System (Senegal). Journal of Hydrology, 511, 443-459.
https://doi.org/10.1016/j.jhydrol.2014.01.037
[47]  Adimalla, N. and Wu, J. (2019) Groundwater Quality and Associated Health Risks in a Semi-Arid Region of South India: Implication to Sustainable Groundwater Management. Human and Ecological Risk Assessment: An International Journal, 25, 191-216.
https://doi.org/10.1080/10807039.2018.1546550
[48]  USEPA (2001) Risk Assessment Guidance for Superfund: Process for Conducting Probabilistic Risk Assessment (Volume III-Part A, 540-R-502-002).
[49]  Li, P., Li, X., Meng, X., Li, M. and Zhang, Y. (2016) Appraising Groundwater Quality and Health Risks from Contamination in a Semiarid Region of Northwest China. Exposure and Health, 8, 361-379.
https://doi.org/10.1007/s12403-016-0205-y
[50]  Li, J., Sun, C., Chen, W., Zhang, Q., Zhou, S., Lin, R., et al. (2022) Groundwater Quality and Associated Human Health Risk in a Typical Basin of the Eastern Chinese Loess Plateau. Water, 14, Article No. 1371.
https://doi.org/10.3390/w14091371
[51]  USEPA (1989) Risk Assessment Guidance for Superfund: Human Health Evaluation Manual (Part A), Volume 1. Office of Emergency and Remedial Response.
[52]  USEPA (2014) Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors-OSWER Directive 9200.1-120. p. 6.
[53]  Boateng, T.K., Opoku, F., Acquaah, S.O. and Akoto, O. (2016) Groundwater Quality Assessment Using Statistical Approach and Water Quality Index in Ejisu-Juaben Municipality, Ghana. Environmental Earth Sciences, 75, Article No. 489.
https://doi.org/10.1007/s12665-015-5105-0
[54]  Todd, D.K. (1980) Groundwater Hydrology. 2nd Edition, Wiley.
[55]  Singh, A.K., Raj, B., Tiwari, A.K. and Mahato, M.K. (2013) Evaluation of Hydrogeochemical Processes and Groundwater Quality in the Jhansi District of Bundelkhand Region, India. Environmental Earth Sciences, 70, 1225-1247.
https://doi.org/10.1007/s12665-012-2209-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133