全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机理 + 数据补偿模型的车辆轨迹跟踪控制
Vehicle Trajectory Tracking Control Based on Mechanism + Data Compensation Model

DOI: 10.12677/ojtt.2024.136047, PP. 435-443

Keywords: 路径跟踪,模型预测,LQR控制
Path Tracking
, Model Prediction, LQR Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对无人驾驶车辆在制造和装配过程中的精度限制导致车辆的实际物理参数和设计值不一致性的问题。本文提出了一种机理与数据驱动补偿模型的线性二次调节器(LQR)控制策略。通过线性回归误差补偿对观光车机理模型进行优化,提高了模型的准确性和稳定性。基于补偿后的模型,设计了LQR路径跟踪控制器,通过优化二次型性能指标确定系统最优控制序列。仿真结果证实,与未补偿模型相比,该策略有效提高路径跟踪精度和维持系统稳定性,展示了机理与数据驱动补偿的LQR控制策略在无人驾驶车辆路径跟踪控制中的有效性和优越性。
Aiming at the problem of inconsistencies between actual physical parameters and design values caused by precision limitations in the manufacturing and assembly process of unmanned vehicles. In this paper, a linear quadratic regulator (LQR) control strategy combining mechanism model and data-driven compensation is proposed. Through linear regression error compensation, the sightseeing vehicle mechanism model is optimized, and the accuracy and stability of the model are improved. Based on the compensated model, the LQR path tracking controller is designed, and the optimal control sequence is determined by optimizing the quadratic performance index. Simulation results confirm that compared with the uncompensated model, the proposed strategy effectively improves the path tracking accuracy and maintains the system stability, demonstrating the effectiveness and superiority of the LQR control strategy based on the fusion mechanism and data-driven compensation in the path tracking control of unmanned vehicles.

References

[1]  李胜琴, 邢佳祁. 基于模型预测和转角补偿的智能汽车换道轨迹跟踪控制算法[J]. 江苏大学学报(自然科学版), 2024, 45(3): 249-256.
[2]  杨辉, 童英赫, 付雅婷, 等. 基于模型补偿的高速列车状态反馈预测控制[J]. 铁道科学与工程学报, 2020, 17(10): 2460-2468.
[3]  《中国公路学报》编辑部. 中国汽车工程学术研究综述∙2017[J]. 中国公路学报, 2017, 30(6): 1-197.
[4]  陈耀庭, 郑燕萍. 无人驾驶汽车路径跟踪算法研究综述[J]. 林业机械与木工设备, 2023, 51(6): 21-26, 35.
[5]  郑川, 杜煜, 刘子健. 自动驾驶汽车横向控制方法研究综述[J]. 汽车工程师, 2024(5): 1-10.
[6]  Yu, S., Hirche, M., Huang, Y., Chen, H. and Allgöwer, F. (2021) Model Predictive Control for Autonomous Ground Vehicles: A Review. Autonomous Intelligent Systems, 1, Article No. 4.
https://doi.org/10.1007/s43684-021-00005-z
[7]  胡杰, 陈锐鹏, 张志豪, 等. 基于RMPC的自动驾驶货车路径跟踪控制[J]. 汽车工程, 2023, 45(11): 2092-2103.
[8]  Wang, J., Fader, M.T.H. and Marshall, J.A. (2023) Learning‐Based Model Predictive Control for Improved Mobile Robot Path Following Using Gaussian Processes and Feedback Linearization. Journal of Field Robotics, 40, 1014-1033.
https://doi.org/10.1002/rob.22165
[9]  王文娟, 李俊. 一种RBF神经网络的直接自适应滑模轨迹跟踪控制设计[J]. 机械设计与制造, 2020(11): 183-187.
[10]  Yang, Q., Ma, X., Wang, W. and Peng, D. (2022) Adaptive Non-Singular Fast Terminal Sliding Mode Trajectory Tracking Control for Robot Manipulators. Electronics, 11, Article 3672.
https://doi.org/10.3390/electronics11223672
[11]  Miao, X., Zhou, C., Li, J. and He, X. (2015) Studies of Elastic and Elastic-Plastic J Integral for Mixed Mode Cracked Plate under Biaxial Loading. Fatigue & Fracture of Engineering Materials & Structures, 39, 536-550.
https://doi.org/10.1111/ffe.12371
[12]  崔凯晨, 高松, 王鹏伟, 等. 基于前馈 + 预测LQR的智能车循迹控制器设计[J]. 科学技术与工程, 2024, 24(10): 4287-4299.
[13]  姬江涛, 王启洲, 张玉成, 等. 无人驾驶农机装备的模糊PI-LQR转向控制算法[J]. 河南科技大学学报(自然科学版), 2024, 45(3): 9-16, 115.
[14]  Xu, S. and Peng, H. (2020) Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems, 21, 48-58.
https://doi.org/10.1109/tits.2019.2892926

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133