|
脐带血单个核细胞在肝病治疗中的应用前景
|
Abstract:
脐带血单个核细胞(Umbilical cord blood-mononuclear cells, UCB-MNCs)由于其独特的干细胞来源及显著的免疫调节特性,近年来在肝病治疗领域引起了广泛的关注。肝病,尤其是肝纤维化、肝炎和肝癌,已成为全球公共健康面临的重大挑战。尽管传统治疗方法的效果有限,UCB-MNCs凭借其再生与修复的潜力,展现出良好的临床应用前景。本文旨在深入分析UCB-MNCs在肝病治疗中的应用现状,探讨其作用机制,回顾相关临床研究的进展,并展望未来的发展方向。通过对相关文献的系统性梳理,我们揭示了UCB-MNCs在促进肝脏再生及免疫调节中的关键作用,展望了未来研究的潜在方向,以期为UCB-MNCs在肝病治疗中的应用提供更为明确的指导。
Umbilical cord blood mononuclear cells (UCB-MNCs), due to their unique stem cell source and significant immunomodulatory properties, have garnered widespread attention in recent years in the field of liver disease treatment. Liver diseases, especially liver fibrosis, hepatitis, and liver cancer, have become major challenges in global public health. Although the effects of traditional treatment methods are limited, UCB-MNCs show promising clinical potential with their regenerative and reparative capabilities. This paper aims to analyze the current applications of UCB-MNCs in liver disease treatment, explore their mechanisms of action, review the progress of related clinical studies, and look ahead to future developments. By systematically reviewing relevant literature, we highlight the key roles of UCB-MNCs in promoting liver regeneration and immunomodulation, and anticipate potential directions for future research, providing clearer guidance for the application of UCB-MNCs in liver disease treatment.
[1] | Paloczi, K. (1999) Immunophenotypic and Functional Characterization of Human Umbilical Cord Blood Mononuclear Cells. Leukemia, 13, S87-S89. https://doi.org/10.1038/sj.leu.2401318 |
[2] | Kaya, E. and Yilmaz, Y. (2022) Epidemiology, Natural History, and Diagnosis of Metabolic Dysfunction-Associated Fatty Liver Disease: A Comparative Review with Nonalcoholic Fatty Liver Disease. Therapeutic Advances in Endocrinology and Metabolism, 13. https://doi.org/10.1177/20420188221139650 |
[3] | Xiao, J., Wang, F., Wong, N., Lv, Y., Liu, Y., Zhong, J., et al. (2020) Epidemiological Realities of Alcoholic Liver Disease: Global Burden, Research Trends, and Therapeutic Promise. Gene Expression, 20, 105-118. https://doi.org/10.3727/105221620x15952664091823 |
[4] | Zhang, J., Zhai, H., Yu, P., Shang, D., Mo, R., Li, Z., et al. (2022) Human Umbilical Cord Blood Mononuclear Cells Ameliorate CCl4-Induced Acute Liver Injury in Mice via Inhibiting Inflammatory Responses and Upregulating Peripheral Interleukin-22. Frontiers in Pharmacology, 13, Article ID: 924464. https://doi.org/10.3389/fphar.2022.924464 |
[5] | Tran, N.T., Penny, T.R., Chan, K.Y., Tang, T., Papagianis, P.C., Sepehrizadeh, T., et al. (2024) Early Administration of Umbilical Cord Blood Cells Following Brief High Tidal Volume Ventilation in Preterm Sheep: A Cautionary Tale. Journal of Neuroinflammation, 21, Article No. 121. https://doi.org/10.1186/s12974-024-03053-3 |
[6] | Yuan, M., Yao, L., Chen, P., Wang, Z., Liu, P., Xiong, Z., et al. (2023) Human Umbilical Cord Mesenchymal Stem Cells Inhibit Liver Fibrosis via the MicroRNA-148a-5p/slit3 Axis. International Immunopharmacology, 125, Article ID: 111134. https://doi.org/10.1016/j.intimp.2023.111134 |
[7] | Xu, X., Huang, X., Sun, J., Wang, R., Yao, J., Han, W., et al. (2021) Recent Progress of Inertial Microfluidic-Based Cell Separation. The Analyst, 146, 7070-7086. https://doi.org/10.1039/d1an01160j |
[8] | De Rosa, A., McGaughey, S., Magrath, I. and Byrt, C. (2023) Molecular Membrane Separation: Plants Inspire New Technologies. New Phytologist, 238, 33-54. https://doi.org/10.1111/nph.18762 |
[9] | Wang, M., Yang, Y., Yang, D., Luo, F., Liang, W., Guo, S., et al. (2009) The Immunomodulatory Activity of Human Umbilical Cord Blood‐Derived Mesenchymal Stem Cells in Vitro. Immunology, 126, 220-232. https://doi.org/10.1111/j.1365-2567.2008.02891.x |
[10] | Ahn, S.Y., Maeng, Y., Kim, Y.R., Choe, Y.H., Hwang, H.S. and Hyun, Y. (2020) In Vivo Monitoring of Dynamic Interaction between Neutrophil and Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell in Mouse Liver during Sepsis. Stem Cell Research & Therapy, 11, Article No. 44. https://doi.org/10.1186/s13287-020-1559-4 |
[11] | Hua, Q., Zhang, Y., Li, H., Li, H., Jin, R., Li, L., et al. (2022) Human Umbilical Cord Blood-Derived MSCS Trans-Differentiate into Endometrial Cells and Regulate Th17/Treg Balance through NF-κB Signaling in Rabbit Intrauterine Adhesions Endometrium. Stem Cell Research & Therapy, 13, Article No. 301. https://doi.org/10.1186/s13287-022-02990-1 |
[12] | Chen, Y., Xu, Y., Chi, Y., Sun, T., Gao, Y., Dou, X., et al. (2024) Efficacy and Safety of Human Umbilical Cord-Derived Mesenchymal Stem Cells in the Treatment of Refractory Immune Thrombocytopenia: A Prospective, Single Arm, Phase I Trial. Signal Transduction and Targeted Therapy, 9, Article No. 102. https://doi.org/10.1038/s41392-024-01793-5 |
[13] | Liu, J., Xu, W., Xu, H., Zhang, S. and Jin, J. (2022) Therapeutic Potential of Umbilical Cord MSC in Crohn’s Disease Is Related to Regulation of the Relative Content and Function of Th17 Lymphocytes. Bulletin of Experimental Biology and Medicine, 172, 658-663. https://doi.org/10.1007/s10517-022-05450-1 |
[14] | Muthu, B., Manivannan, P., Subbaiah, M., Vanju, S. and Basavarajegowda, A. (2024) Effect of Fetal Distress on Viability and Yield of Umbilical Cord Blood Stem Cells—A Prospective Comparative Study. Hematology, Transfusion and Cell Therapy. https://doi.org/10.1016/j.htct.2024.03.004 |
[15] | Xi, Y., Yue, G., Gao, S., Ju, R. and Wang, Y. (2022) Human Umbilical Cord Blood Mononuclear Cells Transplantation for Perinatal Brain Injury. Stem Cell Research & Therapy, 13, Article No. 458. https://doi.org/10.1186/s13287-022-03153-y |
[16] | Than, U.T.T., Le, H.T., Hoang, D.H., Nguyen, X., Pham, C.T., Bui, K.T.V., et al. (2020) Induction of Antitumor Immunity by Exosomes Isolated from Cryopreserved Cord Blood Monocyte-Derived Dendritic Cells. International Journal of Molecular Sciences, 21, Article No. 1834. https://doi.org/10.3390/ijms21051834 |
[17] | Hammerich, L. and Tacke, F. (2023) Hepatic Inflammatory Responses in Liver Fibrosis. Nature Reviews Gastroenterology & Hepatology, 20, 633-646. https://doi.org/10.1038/s41575-023-00807-x |
[18] | Allameh, A., Niayesh-Mehr, R., Aliarab, A., Sebastiani, G. and Pantopoulos, K. (2023) Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants, 12, Article No. 1653. https://doi.org/10.3390/antiox12091653 |
[19] | Blas-García, A. and Apostolova, N. (2023) Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants, 12, Article No. 1567. https://doi.org/10.3390/antiox12081567 |
[20] | Dewidar, B., Meyer, C., Dooley, S. and Meindl-Beinker, A.N. (2019) TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis—Updated 2019. Cells, 8, Article No. 1419. https://doi.org/10.3390/cells8111419 |
[21] | Yang, Y., Sun, M., Li, W., Liu, C., Jiang, Z., Gu, P., et al. (2021) Rebalancing TGF‐β/smad7 Signaling via Compound Kushen Injection in Hepatic Stellate Cells Protects against Liver Fibrosis and Hepatocarcinogenesis. Clinical and Translational Medicine, 11, e410. https://doi.org/10.1002/ctm2.410 |
[22] | Bonnardel, J., T’Jonck, W., Gaublomme, D., Browaeys, R., Scott, C.L., Martens, L., et al. (2019) Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 51, 638-654.e9. https://doi.org/10.1016/j.immuni.2019.08.017 |
[23] | Cai, J., Hu, M., Chen, Z. and Ling, Z. (2021) The Roles and Mechanisms of Hypoxia in Liver Fibrosis. Journal of Translational Medicine, 19, Article No. 186. https://doi.org/10.1186/s12967-021-02854-x |
[24] | Zhang, G., Sun, H., Zheng, L., Guo, J. and Zhang, X. (2017) In Vivo Hepatic Differentiation Potential of Human Umbilical Cord-Derived Mesenchymal Stem Cells: Therapeutic Effect on Liver Fibrosis/cirrhosis. World Journal of Gastroenterology, 23, 8152-8168. https://doi.org/10.3748/wjg.v23.i46.8152 |
[25] | Wu, M. and Meng, Q. (2021) Current Understanding of Mesenchymal Stem Cells in Liver Diseases. World Journal of Stem Cells, 13, 1349-1359. https://doi.org/10.4252/wjsc.v13.i9.1349 |
[26] | Lee, Y. and Seki, E. (2023) In Vivo and in Vitro Models to Study Liver Fibrosis: Mechanisms and Limitations. Cellular and Molecular Gastroenterology and Hepatology, 16, 355-367. https://doi.org/10.1016/j.jcmgh.2023.05.010 |
[27] | Li, Z., Zhou, X., Han, L., Shi, M., Xiao, H., Lin, M., et al. (2023) Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation for Patients with Decompensated Liver Cirrhosis. Journal of Gastrointestinal Surgery, 27, 926-931. https://doi.org/10.1007/s11605-022-05528-1 |
[28] | Álvarez-Mercado, A.I., Sáez-Lara, M.J., García-Mediavilla, M.V., Sánchez-Campos, S., Abadía, F., Cabello-Donayre, M., et al. (2008) Xenotransplantation of Human Umbilical Cord Blood Mononuclear Cells to Rats with D-Galactosamine-Induced Hepatitis. Cell Transplantation, 17, 845-857. https://doi.org/10.3727/096368908786516837 |
[29] | Hoblos, R. and Kefalakes, H. (2022) Immunology of Hepatitis D Virus Infection: General Concepts and Present Evidence. Liver International, 43, 47-59. https://doi.org/10.1111/liv.15424 |
[30] | Ma, H., Yan, Q., Ma, J., Li, D. and Yang, J. (2024) Overview of the Immunological Mechanisms in Hepatitis B Virus Reactivation: Implications for Disease Progression and Management Strategies. World Journal of Gastroenterology, 30, 1295-1312. https://doi.org/10.3748/wjg.v30.i10.1295 |
[31] | Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A. and Yousefi, M. (2019) Human Umbilical Cord Mesenchymal Stem Cell‐Derived Extracellular Vesicles: A Novel Therapeutic Paradigm. Journal of Cellular Physiology, 235, 706-717. https://doi.org/10.1002/jcp.29004 |
[32] | Zhang, Z., Lin, H., Shi, M., Xu, R., Fu, J., Lv, J., et al. (2012) Human Umbilical Cord Mesenchymal Stem Cells Improve Liver Function and Ascites in Decompensated Liver Cirrhosis Patients. Journal of Gastroenterology and Hepatology, 27, 112-120. https://doi.org/10.1111/j.1440-1746.2011.07024.x |
[33] | Um, S., Ha, J., Choi, S.J., Oh, W. and Jin, H.J. (2020) Prospects for the Therapeutic Development of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. World Journal of Stem Cells, 12, 1511-1528. https://doi.org/10.4252/wjsc.v12.i12.1511 |
[34] | Marengo, A., Rosso, C. and Bugianesi, E. (2016) Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annual Review of Medicine, 67, 103-117. https://doi.org/10.1146/annurev-med-090514-013832 |
[35] | Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362. https://doi.org/10.1016/s0140-6736(22)01200-4 |
[36] | Zumwalde, N.A. and Gumperz, J.E. (2018) Modeling Human Antitumor Responses in Vivo Using Umbilical Cord Blood-Engrafted Mice. Frontiers in Immunology, 9, Article No. 54. https://doi.org/10.3389/fimmu.2018.00054 |
[37] | Elmahdy, N.A., Sokar, S.S., Salem, M.L., Sarhan, N.I. and Abou-Elela, S.H. (2017) Anti-Fibrotic Potential of Human Umbilical Cord Mononuclear Cells and Mouse Bone Marrow Cells in CCl4-Induced Liver Fibrosis in Mice. Biomedicine & Pharmacotherapy, 89, 1378-1386. https://doi.org/10.1016/j.biopha.2017.03.007 |
[38] | Yin, F., Wang, W. and Jiang, W. (2019) Human Umbilical Cord Mesenchymal Stem Cells Ameliorate Liver Fibrosis in Vitro and in Vivo: From Biological Characteristics to Therapeutic Mechanisms. World Journal of Stem Cells, 11, 548-564. https://doi.org/10.4252/wjsc.v11.i8.548 |