|
miRNA451a与胰岛素抵抗及糖尿病肾病的关系
|
Abstract:
2型糖尿病是一种发病机制复杂,以胰岛素抵抗、β细胞数量减少与功能障碍为特征的疾病,糖尿病肾脏病(Diabetes Kidney Disease, DKD)是糖尿病常见的慢性并发症之一,是由糖尿病引起的慢性肾脏病(CKD)。近年来,一些研究表明,miRNA451a与胰岛素抵抗存在一定关系,在糖肾中发生表达的改变,影响糖肾的进展。本文综述了胰岛素抵抗和糖肾的发病机制与miRNA451a的关系,为更深入地了解miRNA51a对2型糖尿病及糖肾的发病机制及治疗提供参考。
Type 2 diabetes is a complex disease characterized by insulin resistance, reduced β-cells and its dysfunction. Diabetic kidney disease (DKD) is one of the common chronic complications of diabetes and is chronic kidney disease (CKD) caused by diabetes. In recent years, several studies have shown that a certain relationship between miRNA451a and insulin resistance, and its altered expression occurs in DKD, affecting the progression of DKD. This review summarizes the relationship between insulin resistance and DKD with miRNA451a to provide a further understanding of the pathogenesis and treatment of miRNA51a in type 2 diabetes and DKD.
[1] | Afkarian, M., Zelnick, L.R., Hall, Y.N., Heagerty, P.J., Tuttle, K., Weiss, N.S., et al. (2016) Clinical Manifestations of Kidney Disease among US Adults with Diabetes, 1988-2014. JAMA, 316, 602-610. https://doi.org/10.1001/jama.2016.10924 |
[2] | de Boer, I.H. (2013) Kidney Disease and Related Findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care, 37, 24-30. https://doi.org/10.2337/dc13-2113 |
[3] | 魏倩, 张锦. 2型糖尿病肾病不同时期的胰岛素抵抗分析[J]. 中国中西医结合肾病杂志, 2010, 11(1): 50-52. |
[4] | 韩爽, 徐弘昭, 许钟镐. 胰岛素抵抗在糖尿病及糖尿病肾病进展中的作用[J]. 中国实验诊断学, 2017, 21(2): 368-371. |
[5] | 赵鹏鸣, 王俭勤, 梁耀军. 内皮细胞损伤在糖尿病肾病发病机制中的作用[J]. 中国糖尿病杂志, 2016, 24(2): 169-172. |
[6] | Turner, N. and Heilbronn, L.K. (2008) Is Mitochondrial Dysfunction a Cause of Insulin Resistance? Trends in Endocrinology & Metabolism, 19, 324-330. https://doi.org/10.1016/j.tem.2008.08.001 |
[7] | 瞿华, 郑怡, 宫晓莉, 等. 线粒体功能障碍在糖尿病并发症发病机制及治疗中的研究进展[J]. 中华内分泌代谢杂志, 2020, 36(2): 161-164. |
[8] | Giacco, F. and Brownlee, M. (2010) Oxidative Stress and Diabetic Complications. Circulation Research, 107, 1058-1070. https://doi.org/10.1161/circresaha.110.223545 |
[9] | Do Nascimento, L.R. and Domingueti, C.P. (2019) MicroRNAs: New Biomarkers and Promising Therapeutic Targets for Diabetic Kidney Disease. Brazilian Journal of Nephrology, 41, 412-422. https://doi.org/10.1590/2175-8239-jbn-2018-0165 |
[10] | Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015) Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics, Proteomics & Bioinformatics, 13, 17-24. https://doi.org/10.1016/j.gpb.2015.02.001 |
[11] | 尹频, 贺勇, 查何, 等. miR-451对肾小球系膜细胞增殖的抑制作用及其机制[J]. 中国生物制品学杂志, 2013, 26(12): 1748-1752. |
[12] | Hur, W., Lee, J.H., Kim, S.W., Kim, J., Bae, S.H., Kim, M., et al. (2015) Downregulation of MicroRNA-451 in Non-Alcoholic Steatohepatitis Inhibits Fatty Acid-Induced Proinflammatory Cytokine Production through the AMPK/AKT Pathway. The International Journal of Biochemistry & Cell Biology, 64, 265-276. https://doi.org/10.1016/j.biocel.2015.04.016 |
[13] | Sankrityayan, H., Kulkarni, Y.A. and Gaikwad, A.B. (2019) Diabetic Nephropathy: The Regulatory Interplay between Epigenetics and MicroRNAs. Pharmacological Research, 141, 574-585. https://doi.org/10.1016/j.phrs.2019.01.043 |
[14] | Mohan, A., Singh, R.S., Kumari, M., Garg, D., Upadhyay, A., Ecelbarger, C.M., et al. (2016) Urinary Exosomal MicroRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats. PLOS ONE, 11, e0154055. https://doi.org/10.1371/journal.pone.0154055 |
[15] | 张晶露, 邱琳, 雒晓春. 糖尿病肾病发病机制研究进展[J]. 医学综述, 2017, 23(8): 1623⁃1627. |
[16] | Xiao, L., Zhu, X., Yang, S., Liu, F., Zhou, Z., Zhan, M., et al. (2014) Rap1 Ameliorates Renal Tubular Injury in Diabetic Nephropathy. Diabetes, 63, 1366-1380. https://doi.org/10.2337/db13-1412 |
[17] | 冯俊, 马屹茕, 陈朝威, 丁国华. 线粒体复合体在肾脏疾病中的研究进展[J]. 中华肾脏病杂志, 2020(3): 247-252. |
[18] | Ayanga, B.A., Badal, S.S., Wang, Y., Galvan, D.L., Chang, B.H., Schumacker, P.T., et al. (2016) Dynamin-Related Protein 1 Deficiency Improves Mitochondrial Fitness and Protects against Progression of Diabetic Nephropathy. Journal of the American Society of Nephrology, 27, 2733-2747. https://doi.org/10.1681/asn.2015101096 |
[19] | Czajka, A. and Malik, A.N. (2016) Hyperglycemia Induced Damage to Mitochondrial Respiration in Renal Mesangial and Tubular Cells: Implications for Diabetic Nephropathy. Redox Biology, 10, 100-107. https://doi.org/10.1016/j.redox.2016.09.007 |
[20] | Ma, T., Zhu, J., Chen, X., Zha, D., Singhal, P.C. and Ding, G. (2013) High Glucose Induces Autophagy in Podocytes. Experimental Cell Research, 319, 779-789. https://doi.org/10.1016/j.yexcr.2013.01.018 |
[21] | Bitarte, N., Bandres, E., Boni, V., Zarate, R., Rodriguez, J., Gonzalez-Huarriz, M., et al. (2011) MicroRNA-451 Is Involved in the Self-Renewal, Tumorigenicity, and Chemoresistance of Colorectal Cancer Stem Cells. Stem Cells, 29, 1661-1671. https://doi.org/10.1002/stem.741 |
[22] | Pan, X., Wang, R. and Wang, Z. (2013) The Potential Role of miR-451 in Cancer Diagnosis, Prognosis, and Therapy. Molecular Cancer Therapeutics, 12, 1153-1162. https://doi.org/10.1158/1535-7163.mct-12-0802 |
[23] | Cao, J., Da, Y., Li, H., Peng, Y. and Hu, X. (2020) Upregulation of MicroRNA-451 Attenuates Myocardial I/R Injury by Suppressing HMGB1. PLOS ONE, 15, e0235614. https://doi.org/10.1371/journal.pone.0235614 |
[24] | Bai, X., Geng, J., Zhou, Z., Tian, J. and Li, X. (2016) MicroRNA-130b Improves Renal Tubulointerstitial Fibrosis via Repression of Snail-Induced Epithelial-Mesenchymal Transition in Diabetic Nephropathy. Scientific Reports, 6, Article No. 20475. https://doi.org/10.1038/srep20475 |
[25] | Zhuo, S., Yang, M., Zhao, Y., Chen, X., Zhang, F., Li, N., et al. (2016) MicroRNA-451 Negatively Regulates Hepatic Glucose Production and Glucose Homeostasis by Targeting Glycerol Kinase-Mediated Gluconeogenesis. Diabetes, 65, 3276-3288. https://doi.org/10.2337/db16-0166 |
[26] | Wang, W., Zhang, L., Wang, Y., Ding, Y., Chen, T., Wang, Y., et al. (2017) Involvement of miR-451 in Resistance to Paclitaxel by Regulating YWHAZ in Breast Cancer. Cell Death & Disease, 8, e3071-e3071. https://doi.org/10.1038/cddis.2017.460 |
[27] | Karolina, D.S., Armugam, A., Tavintharan, S., Wong, M.T.K., Lim, S.C., Sum, C.F., et al. (2011) MicroRNA 144 Impairs Insulin Signaling by Inhibiting the Expression of Insulin Receptor Substrate 1 in Type 2 Diabetes Mellitus. PLOS ONE, 6, e22839. https://doi.org/10.1371/journal.pone.0022839 |
[28] | Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., et al. (2011) MicroRNAs 103 and 107 Regulate Insulin Sensitivity. Nature, 474, 649-653. https://doi.org/10.1038/nature10112 |
[29] | Liang, C., Gao, L., Liu, Y., Liu, Y., Yao, R., Li, Y., et al. (2019) MiR-451 Antagonist Protects against Cardiac Fibrosis in Streptozotocin-Induced Diabetic Mouse Heart. Life Sciences, 224, 12-22. https://doi.org/10.1016/j.lfs.2019.02.059 |
[30] | Sun, Y., Peng, R., Peng, H., Liu, H., Wen, L., Wu, T., et al. (2016) miR-451 Suppresses the NF-kappaB-Mediated Proinflammatory Molecules Expression through Inhibiting LMP7 in Diabetic Nephropathy. Molecular and Cellular Endocrinology, 433, 75-86. https://doi.org/10.1016/j.mce.2016.06.004 |
[31] | 孙艳. miR-451通过LMP7/NF-KappB信号通路调控小鼠糖尿病肾病的机制研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2016. |
[32] | Mootha, V.K., Lindgren, C.M., Eriksson, K., Subramanian, A., Sihag, S., Lehar, J., et al. (2003) PGC-1α-Responsive Genes Involved in Oxidative Phosphorylation Are Coordinately Downregulated in Human Diabetes. Nature Genetics, 34, 267-273. https://doi.org/10.1038/ng1180 |
[33] | Patti, M.E., Butte, A.J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., et al. (2003) Coordinated Reduction of Genes of Oxidative Metabolism in Humans with Insulin Resistance and Diabetes: Potential Role of PGC1 and NRF1. Proceedings of the National Academy of Sciences, 100, 8466-8471. https://doi.org/10.1073/pnas.1032913100 |
[34] | 张克交, 杨艳敏, 张彦栋, 等. 线粒体与胰岛素抵抗的关系研究进展[J]. 中国当代医药, 2019, 26(32): 16-19. |
[35] | Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Orr, A.L. and Brand, M.D. (2013) Sites of Reactive Oxygen Species Generation by Mitochondria Oxidizing Different Substrates. Redox Biology, 1, 304-312. https://doi.org/10.1016/j.redox.2013.04.005 |
[36] | Su, Y., Chiou, W., Chao, S., Lee, M., Chen, C. and Tsai, Y. (2011) Ligustilide Prevents LPS-Induced iNOS Expression in RAW 264.7 Macrophages by Preventing ROS Production and Down-Regulating the MAPK, NF-κB and AP-1 Signaling Pathways. International Immunopharmacology, 11, 1166-1172. https://doi.org/10.1016/j.intimp.2011.03.014 |
[37] | Phosat, C., Panprathip, P., Chumpathat, N., Prangthip, P., Chantratita, N., Soonthornworasiri, N., et al. (2017) Elevated C-Reactive Protein, Interleukin 6, Tumor Necrosis Factor Alpha and Glycemic Load Associated with Type 2 Diabetes Mellitus in Rural Thais: A Cross-Sectional Study. BMC Endocrine Disorders, 17, Article No. 44. https://doi.org/10.1186/s12902-017-0189-z |
[38] | 徐海波, 闫晓光, 钟威. 新诊断2型糖尿病患者血清Nesfatin-1α肿瘤坏死因子-α水平与胰岛素抵抗的相关性研究[J]. 中国糖尿病杂志, 2017, 25(1): 45-48. |
[39] | Zhang, Y. and Ye, J. (2012) Mitochondrial Inhibitor as a New Class of Insulin Sensitizer. Acta Pharmaceutica Sinica B, 2, 341-349. https://doi.org/10.1016/j.apsb.2012.06.010 |
[40] | T. Barry Levine Arlene Bradley Levine. 代谢综合征与心血管疾病[M]. 张华, 张代富, 译. 北京: 人民出版社, 2010: 28-29. |
[41] | 黄宇理, 包宗明. 冠心病患者血浆8-表氧-前列腺素F2α和胰岛素抵抗的变化及临床意义[J]. 中国循证心血管医学杂志, 2011, 3(2): 121-123. |
[42] | Steinberg, H.O., Paradisi, G., Hook, G., Crowder, K., Cronin, J. and Baron, A.D. (2000) Free Fatty Acid Elevation Impairs Insulin-Mediated Vasodilation and Nitric Oxide Production. Diabetes, 49, 1231-1238. https://doi.org/10.2337/diabetes.49.7.1231 |