|
分子影像学在结直肠癌免疫治疗中的研究进展
|
Abstract:
结直肠癌是常见的恶性肿瘤,近年来免疫治疗已经成为继手术、化学疗法和放射疗法之后的主要治疗手段,且取得了很好的疗效。由于患者个体化差异存在,免疫治疗前或治疗中需要密切监测体内疾病相关的免疫变化,从而制定个性化、精准化的治疗方案。分子影像技术可以从细胞或分子水平上更好地监测肿瘤免疫治疗的反应,选择合适的靶点及示踪剂是分子成像的重要环节。本文将就分子影像学在结直肠癌免疫治疗监测方面的应用作综述。
Colorectal cancer is a common malignant tumor. In recent years, the immunotherapy has become the main treatment means after surgery, chemotherapy and radiotherapy, and has achieved great efficacy. Due to the existence of individualized differences in patients, immunotherapy requires close monitoring of disease-related immune changes in the body before or during treatment, so as to formulate personalized and precise treatment plans. Molecular imaging technology can better monitor the response to tumor immunotherapy at the cellular or molecular level, and the selection of appropriate targets and tracers is an important part of molecular imaging. In this paper, we will review the application of molecular imaging in the monitoring of immunotherapy for colorectal cancer.
[1] | Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708 |
[2] | Li, K., Zhang, A., Li, X., Zhang, H. and Zhao, L. (2021) Advances in Clinical Immunotherapy for Gastric Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188615. https://doi.org/10.1016/j.bbcan.2021.188615 |
[3] | Reck, M., Remon, J. and Hellmann, M.D. (2022) First-Line Immunotherapy for Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 40, 586-597. https://doi.org/10.1200/jco.21.01497 |
[4] | Bear, A.S., Vonderheide, R.H. and O’Hara, M.H. (2020) Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 38, 788-802. https://doi.org/10.1016/j.ccell.2020.08.004 |
[5] | Palestro, C.J. (2020) Molecular Imaging of Infection: The First 50 Years. Seminars in Nuclear Medicine, 50, 23-34. https://doi.org/10.1053/j.semnuclmed.2019.10.002 |
[6] | 李坤成, 于春水. 分子影像学研究进展 [J]. 中国医疗设备, 2008, 23(1): 1-4. |
[7] | Groheux, D., Cochet, A., Humbert, O., Alberini, J., Hindié, E. and Mankoff, D. (2016) 18F-FDG PET/CT for Staging and Restaging of Breast Cancer. Journal of Nuclear Medicine, 57, 17S-26S. https://doi.org/10.2967/jnumed.115.157859 |
[8] | Lucia, F., Louis, T., Cousin, F., Bourbonne, V., Visvikis, D., Mievis, C., et al. (2023) Multicentric Development and Evaluation of [18F]-FDG PET/CT and CT Radiomic Models to Predict Regional and/or Distant Recurrence in Early-Stage Non-Small Cell Lung Cancer Treated by Stereotactic Body Radiation Therapy. European Journal of Nuclear Medicine and Molecular Imaging, 51, 1097-1108. https://doi.org/10.1007/s00259-023-06510-y |
[9] | Mirshahvalad, S.A., Hinzpeter, R., Kohan, A., Anconina, R., Kulanthaivelu, R., Ortega, C., et al. (2022) Diagnostic Performance of [18F]-FDG PET/MR in Evaluating Colorectal Cancer: A Systematic Review and Meta-Analysis. European Journal of Nuclear Medicine and Molecular Imaging, 49, 4205-4217. https://doi.org/10.1007/s00259-022-05871-0 |
[10] | Kawada, K., Toda, K., Nakamoto, Y., Iwamoto, M., Hatano, E., Chen, F., et al. (2015) Relationship between 18F-FDG PET/CT Scans and KRAS Mutations in Metastatic Colorectal Cancer. Journal of Nuclear Medicine, 56, 1322-1327. https://doi.org/10.2967/jnumed.115.160614 |
[11] | Hong, J., Guo, F., Lu, S., Shen, C., Ma, D., Zhang, X., et al. (2020) F. Nucleatum Targets LncRNA ENO1-IT1 to Promote Glycolysis and Oncogenesis in Colorectal Cancer. Gut, 70, 2123-2137. https://doi.org/10.1136/gutjnl-2020-322780 |
[12] | Pijl, J.P., Nienhuis, P.H., Kwee, T.C., Glaudemans, A.W.J.M., Slart, R.H.J.A. and Gormsen, L.C. (2021) Limitations and Pitfalls of FDG-PET/CT in Infection and Inflammation. Seminars in Nuclear Medicine, 51, 633-645. https://doi.org/10.1053/j.semnuclmed.2021.06.008 |
[13] | Arasanz, H., Gato-Cañas, M., Zuazo, M., Ibañez-Vea, M., Breckpot, K., Kochan, G., et al. (2017) PD1 Signal Transduction Pathways in T Cells. Oncotarget, 8, 51936-51945. https://doi.org/10.18632/oncotarget.17232 |
[14] | Khailaie, S., Rowshanravan, B., Robert, P.A., Waters, E., Halliday, N., Badillo Herrera, J.D., et al. (2018) Characterization of CTLA4 Trafficking and Implications for Its Function. Biophysical Journal, 115, 1330-1343. https://doi.org/10.1016/j.bpj.2018.08.020 |
[15] | Hahn, N.M., Necchi, A., Loriot, Y., Powles, T., Plimack, E.R., Sonpavde, G., et al. (2018) Role of Checkpoint Inhibition in Localized Bladder Cancer. European Urology Oncology, 1, 190-198. https://doi.org/10.1016/j.euo.2018.05.002 |
[16] | Li, P., Huang, T., Zou, Q., Liu, D., Wang, Y., Tan, X., et al. (2019) FGFR2 Promotes Expression of PD-L1 in Colorectal Cancer via the JAK/STAT3 Signaling Pathway. The Journal of Immunology, 202, 3065-3075. https://doi.org/10.4049/jimmunol.1801199 |
[17] | 马雯娟, 任建伟, 常守凤, 等. PD-L1在结直肠癌肿瘤细胞、肿瘤浸润免疫细胞中的表达与临床病理特征及预后的相关性[J]. 现代肿瘤医学, 2023, 31(14): 2660-2665. |
[18] | 陈思汉, 毛志刚, 张雨濛, 等. PD-L1在人结直肠癌组织中的表达和意义初探[J]. 现代免疫学, 2023, 43(4): 307-311. |
[19] | Contardi, E., Palmisano, G.L., Tazzari, P.L., Martelli, A.M., Falà, F., Fabbi, M., et al. (2005) CTLA-4 Is Constitutively Expressed on Tumor Cells and Can Trigger Apoptosis Upon Ligand Interaction. International Journal of Cancer, 117, 538-550. https://doi.org/10.1002/ijc.21155 |
[20] | Du, Y., Jin, Y., Sun, W., Fang, J., Zheng, J. and Tian, J. (2018) Advances in Molecular Imaging of Immune Checkpoint Targets in Malignancies: Current and Future Prospect. European Radiology, 29, 4294-4302. https://doi.org/10.1007/s00330-018-5814-3 |
[21] | Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., et al. (2001) PD-L2 Is a Second Ligand for PD-1 and Inhibits T Cell Activation. Nature Immunology, 2, 261-268. https://doi.org/10.1038/85330 |
[22] | Ge, Y., Xi, H., Ju, S. and Zhang, X. (2013) Blockade of PD-1/PD-L1 Immune Checkpoint during DC Vaccination Induces Potent Protective Immunity against Breast Cancer in Hu-SCID Mice. Cancer Letters, 336, 253-259. https://doi.org/10.1016/j.canlet.2013.03.010 |
[23] | Brahmer, J.R., Tykodi, S.S., Chow, L.Q.M., Hwu, W., Topalian, S.L., Hwu, P., et al. (2012) Safety and Activity of Anti–pd-L1 Antibody in Patients with Advanced Cancer. New England Journal of Medicine, 366, 2455-2465. https://doi.org/10.1056/nejmoa1200694 |
[24] | Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. New England Journal of Medicine, 366, 2443-2454. https://doi.org/10.1056/nejmoa1200690 |
[25] | England, C.G., Jiang, D., Ehlerding, E.B., Rekoske, B.T., Ellison, P.A., Hernandez, R., et al. (2017) 89Zr-Labeled Nivolumab for Imaging of T-Cell Infiltration in a Humanized Murine Model of Lung Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 45, 110-120. https://doi.org/10.1007/s00259-017-3803-4 |
[26] | Zhang, M., Jiang, H., Zhang, R., Jiang, H., Xu, H., Pan, W., et al. (2019) Near‐Infrared Fluorescence‐Labeled Anti‐PD‐L1‐mAb for Tumor Imaging in Human Colorectal Cancer Xenografted Mice. Journal of Cellular Biochemistry, 120, 10239-10247. https://doi.org/10.1002/jcb.28308 |
[27] | Zhong, Y., Ma, Z., Wang, F., Wang, X., Yang, Y., Liu, Y., et al. (2019) In Vivo Molecular Imaging for Immunotherapy Using Ultra-Bright Near-Infrared-IIb Rare-Earth Nanoparticles. Nature Biotechnology, 37, 1322-1331. https://doi.org/10.1038/s41587-019-0262-4 |
[28] | Lv, G., Sun, X., Qiu, L., Sun, Y., Li, K., Liu, Q., et al. (2019) PET Imaging of Tumor PD-L1 Expression with a Highly Specific Nonblocking Single-Domain Antibody. Journal of Nuclear Medicine, 61, 117-122. https://doi.org/10.2967/jnumed.119.226712 |
[29] | Walker, L.S.K. (2013) Treg and CTLA-4: Two Intertwining Pathways to Immune Tolerance. Journal of Autoimmunity, 45, 49-57. https://doi.org/10.1016/j.jaut.2013.06.006 |
[30] | Sharma, A., Subudhi, S.K., Blando, J., Scutti, J., Vence, L., Wargo, J., et al. (2019) Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3+ Regulatory T Cells (TREGs) in Human Cancers. Clinical Cancer Research, 25, 1233-1238. https://doi.org/10.1158/1078-0432.ccr-18-0762 |
[31] | Camacho, L.H. (2015) ctla‐4 Blockade with Ipilimumab: Biology, Safety, Efficacy, and Future Considerations. Cancer Medicine, 4, 661-672. https://doi.org/10.1002/cam4.371 |
[32] | Ehlerding, E.B., England, C.G., Majewski, R.L., Valdovinos, H.F., Jiang, D., Liu, G., et al. (2017) Immunopet Imaging of CTLA-4 Expression in Mouse Models of Non-Small Cell Lung Cancer. Molecular Pharmaceutics, 14, 1782-1789. https://doi.org/10.1021/acs.molpharmaceut.7b00056 |
[33] | Higashikawa, K., Yagi, K., Watanabe, K., Kamino, S., Ueda, M., Hiromura, M., et al. (2014) 64Cu-DOTA-Anti-CTLA-4 mAb Enabled PET Visualization of CTLA-4 on the T-Cell Infiltrating Tumor Tissues. PLOS ONE, 9, e109866. https://doi.org/10.1371/journal.pone.0109866 |
[34] | Reeves, K.M., Song, P.N., Angermeier, A., Manna, D.D., Li, Y., Wang, J., et al. (2021) 18F-FMISO PET Imaging Identifies Hypoxia and Immunosuppressive Tumor Microenvironments and Guides Targeted Evofosfamide Therapy in Tumors Refractory to PD-1 and CTLA-4 Inhibition. Clinical Cancer Research, 28, 327-337. https://doi.org/10.1158/1078-0432.ccr-21-2394 |
[35] | Kristensen, L.K., Christensen, C., Alfsen, M.Z., Cold, S., Nielsen, C.H. and Kjaer, A. (2020) Monitoring CD8a+ T Cell Responses to Radiotherapy and CTLA-4 Blockade Using [64Cu]NOTA-CD8a PET Imaging. Molecular Imaging and Biology, 22, 1021-1030. https://doi.org/10.1007/s11307-020-01481-0 |
[36] | Lu, P., Takai, K., Weaver, V.M. and Werb, Z. (2011) Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harbor Perspectives in Biology, 3, a005058. https://doi.org/10.1101/cshperspect.a005058 |
[37] | Dranoff, G. (2004) Cytokines in Cancer Pathogenesis and Cancer Therapy. Nature Reviews Cancer, 4, 11-22. https://doi.org/10.1038/nrc1252 |
[38] | Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. and Hermoso, M.A. (2014) Chronic Inflammation and Cytokines in the Tumor Microenvironment. Journal of Immunology Research, 2014, Article ID: 149185. https://doi.org/10.1155/2014/149185 |
[39] | den Hollander, M.W., Bensch, F., Glaudemans, A.W.J.M., Oude Munnink, T.H., Enting, R.H., den Dunnen, W.F.A., et al. (2015) TGF-β Antibody Uptake in Recurrent High-Grade Glioma Imaged with 89Zr-Fresolimumab PET. Journal of Nuclear Medicine, 56, 1310-1314. https://doi.org/10.2967/jnumed.115.154401 |
[40] | van der Veen, E.L., Suurs, F.V., Cleeren, F., Bormans, G., Elsinga, P.H., Hospers, G.A.P., et al. (2020) Development and Evaluation of Interleukin-2-Derived Radiotracers for PET Imaging of T Cells in Mice. Journal of Nuclear Medicine, 61, 1355-1360. https://doi.org/10.2967/jnumed.119.238782 |
[41] | Li, K., Liu, W., Yu, H., Chen, J., Tang, W., Wang, J., et al. (2024) Ga-FAPI PET Imaging Monitors Response to Combined TGF-βR Inhibition and Immunotherapy in Metastatic Colorectal Cancer. Journal of Clinical Investigation, 134, e170490. https://doi.org/10.1172/jci181374 |
[42] | 杨迪迪, 王振宜, 李琦. 中药调节大肠癌患者免疫功能的研究进展[J]. 吉林中医药, 2015, 35(7): 753-756. |
[43] | Lee, E., Kim, Y.S., Kim, J.H., Woo, K.W., Park, Y., Ha, J., et al. (2024) Uncovering the Colorectal Cancer Immunotherapeutic Potential: Evening Primrose (Oenothera biennis) Root Extract and Its Active Compound Oenothein B Targeting the PD-1/PD-L1 Blockade. Phytomedicine, 125, Article ID: 155370. https://doi.org/10.1016/j.phymed.2024.155370 |