全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Derivation of Cylindrical Internal-Surface Acoustic Waves and Their Small Gravity Effect

DOI: 10.4236/jmp.2024.1512088, PP. 2193-2219

Keywords: Elastic Constant Tensor, Continuum Mechanics, Lagrangian, Wave Equation, Surface Acoustic Waves, Newtonian Gravity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CISAW consist of Energy Momentum Packets (EMP) moving in a looping motion. The EMP have mass and are affected by gravity similar to a pendulum bob. The effect of gravity on CISAW is much larger than the effect of gravity in a light wave. Therefore, one can build much smaller CISAW Interferometer Gravity wave Observatories (CIGO) than the present km size Light Interferometer Gravity wave Observatories (LIGO). An array of CIGO can be used to detect gravity wave images. Since the wavelength of gravity waves is much larger than the expected spacing between CIGO array elements this would result in sub-wavelength images. It would be interesting to determine what new discoveries could be made using such an array.

References

[1]  Rayleigh, L. (1885) On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of the London Mathematical Society, 1, 4-11.
https://doi.org/10.1112/plms/s1-17.1.4
[2]  Lamb, H. (1889) On the Flexure of an Elastic Plate. Proceedings of the London Mathematical Society, 21, 70-91.
[3]  Montanaki, A. (2017) Mechanics of Seawaves.
http://www.albertomontanari.il
[4]  Wang, W., Liu, J., Xie, X., Liu, M. and He, S. (2011) Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate. Sensors, 11, 10894-10906.
https://doi.org/10.3390/s111110894
[5]  Kornreich, P.G., Kowel, S.T., Fleming, D.J., Yang, N.T., Gupta, A. and Lewis, O. (1974) DEFT: Direct Electronic Fourier Transforms of Optical Images. Proceedings of the IEEE, 62, 1072-1087.
https://doi.org/10.1109/proc.1974.9571
[6]  Bunney, R.E., Goodman, R.R. and Marshall, S.W. (1969) Rayleigh and Lamb Waves on Cylinders. The Journal of the Acoustical Society of America, 46, 1223-1233.
https://doi.org/10.1121/1.1911844
[7]  Gazis, D.C. (1959) Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation. The Journal of the Acoustical Society of America, 31, 568-573.
https://doi.org/10.1121/1.1907753
[8]  Gazis, D.C. (1959) Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results. The Journal of the Acoustical Society of America, 31, 573-578.
https://doi.org/10.1121/1.1907754
[9]  Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102.
[10]  Abbott, R., Abbott, T.D., Abraham, S., et al. (2021) Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences. Astrophysics Journal Letters, 915, 1-24.
[11]  Abbott, R., Abbott, T.D., Abraham, S., et al. (2020) Gravitational Waves from the Coalescence of a 23M Black Hole with a 2.6M Compact Object. Astrophysical Journal Letters, 896, 1-30.
[12]  Abbott, R., et al. (2020) A Binary Black Hole Merger with a Total Mass of 150 M. Physical Review Letters, 125, 101102-1-110102-17.
[13]  Abbott, R., Abbott, T.D., Abraham, S., et al. (2020) Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger. Astrophysical Journal Letters, 900, 1-39.
[14]  Abbott, R., Abbott, T.D., Abraham, S., et al. (2020) Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M. Astrophysical Journal Letters, 892, 1-24.
[15]  Abbott, R., et al. (2020) Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses. Physical Review D, 102, 043015-1-043015-29.
[16]  Abbott, B.P., et al. (2017) A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 119, 141101-1-141101-16.
[17]  Neice, A. (2010) Methods and Limitations of Subwavelength Imaging. Advances in Imaging and Electron Physics, 163, 117-140.
https://doi.org/10.1016/s1076-5670(10)63003-0
[18]  Feynman, R., Leighton, R. and Sands, M. (2020) The Feynman Lectures of Physics. Basic Books Hachette Book Group.
[19]  Stratton, J.A. (1941) Formulas from Vector Analysis. Electromagnetic Theory, Mc-Graw-Hill Book, 604.
[20]  Yang, Z.H. and Chu, Y.M. (2017) On Approximating the Modified Bessel Function of the Second Kind. Journal of Inequalities and Applications, 2017, Article No. 41.
https://doi.org/10.1186/s13660-017-1317-z
[21]  Beig, R., Chruściel, P.T., Hilweg, C., Kornreich, P. and Walther, P. (2018) Weakly Gravitating Isotropic Waveguides. Classical and Quantum Gravity, 35, Article ID: 244001.
https://doi.org/10.1088/1361-6382/aae873

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133