全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氧化应激与腹膜透析患者动脉粥样硬化研究进展
Research Progress of Oxidative Stress and Atherosclerosis in Patients Undergoing Peritoneal Dialysis

DOI: 10.12677/acm.2024.14112897, PP. 433-439

Keywords: 腹膜透析,氧化应激,动脉粥样硬化
Peritoneal Dialysis
, Oxidative Stress, Atherosclerosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

腹膜透析(peritoneal dialysis, PD)作为慢性肾脏病(chronic kidney disease, CKD)患者的重要治疗方式,为其生存质量的改善带来了积极影响。然而,PD患者动脉粥样硬化(atherosclerosis, AS)的发生率明显高于普通人群,且具有较高的致残、致死率。越来越多的研究表明,氧化应激(oxidative stress, OS)在PD患者AS的形成和演进中扮演着举足轻重的角色,故本文旨在综合阐述氧化应激与腹膜透析患者动脉粥样硬化之间的关系及相关研究的最新进展,为临床治疗和预防提供有价值的参考。
As an important treatment for patients with chronic kidney disease (CKD), peritoneal dialysis (PD) has a positive impact on the improvement of their quality of life. However, the incidence of atherosclerosis (AS) in patients with PD is significantly higher than that in the general population, and has a higher rate of disability and mortality. More and more studies have shown that oxidative stress (OS) plays an important role in the formation and evolution of AS in patients with PD. Therefore, this paper aims to comprehensively explain the relationship between oxidative stress and atherosclerosis in peritoneal dialysis patients and the latest progress of related research, so as to provide valuable reference for clinical treatment and prevention.

References

[1]  Hill, N.R., Fatoba, S.T., Oke, J.L., Hirst, J.A., O’Callaghan, C.A., Lasserson, D.S., et al. (2016) Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0158765.
https://doi.org/10.1371/journal.pone.0158765
[2]  Luyckx, V.A., Tonelli, M. and Stanifer, J.W. (2018) The Global Burden of Kidney Disease and the Sustainable Development Goals. Bulletin of the World Health Organization, 96, 414-422.
https://doi.org/10.2471/blt.17.206441
[3]  Lv, J. and Zhang, L. (2019) Prevalence and Disease Burden of Chronic Kidney Disease. In: Liu, B.-C., Lan, H.-Y. and Lv, L.-L., Eds., Renal Fibrosis: Mechanisms and Therapies, Springer, 3-15.
https://doi.org/10.1007/978-981-13-8871-2_1
[4]  邱春燕, 罗翔, 敕敏. 自动腹膜透析技术治疗慢性肾脏病的临床效果研究[J]. 右江医学, 2022, 50(10): 755-758.
[5]  唐丽婷, 杨定平. 腹膜透析相关并发症及防治研究进展[J]. 疑难病杂志, 2021, 20(12): 1292-1296.
[6]  项目组中国腹膜透析管理现状白皮书. 中国腹膜透析管理现状白皮书[J]. 中华肾脏病杂志, 2022(12): 1076-1104.
[7]  Tanaka, M. and Mise, N. (2021) Need for Evidence on Long-Term Prognosis of PD+HD: A Commentary. BMC Nephrology, 22, Article No. 10.
https://doi.org/10.1186/s12882-020-02212-x
[8]  Andries, A., Rozenski, J., Vermeersch, P., Mekahli, D. and Van Schepdael, A. (2020) Recent Progress in the LC-MS/MS Analysis of Oxidative Stress Biomarkers. Electrophoresis, 42, 402-428.
https://doi.org/10.1002/elps.202000208
[9]  van der Pol, A., van Gilst, W.H., Voors, A.A. and van der Meer, P. (2018) Treating Oxidative Stress in Heart Failure: Past, Present and Future. European Journal of Heart Failure, 21, 425-435.
https://doi.org/10.1002/ejhf.1320
[10]  乔莞宁, 陈虹印, 张扬. 氧化应激与动脉粥样硬化[J]. 中国动脉硬化杂志, 2023, 31(4): 312-321.
[11]  Reichmann, D., Voth, W. and Jakob, U. (2018) Maintaining a Healthy Proteome during Oxidative Stress. Molecular Cell, 69, 203-213.
https://doi.org/10.1016/j.molcel.2017.12.021
[12]  Cetin, N., Sav, N.-M., Ciftci, E., et al. (2017) Foreign Body Reaction to Dialysis Chatheter and Peritoneal Fluid Eosinophilia in a Child on Continuous Ambulatory Peritoneal Dialysis. Iranian Journal of Kidney Diseases, 11, 319-321.
[13]  许琴, 赵烨, 徐煜, 等. 血液透析、腹膜透析2种透析方式对慢性肾衰竭尿毒症患者微炎症状态的影响[J]. 现代中西医结合杂志, 2017, 26(2): 155-156.
[14]  Liakopoulos, V., Roumeliotis, S., Zarogiannis, S., Eleftheriadis, T. and Mertens, P.R. (2018) Oxidative Stress in Hemodialysis: Causative Mechanisms, Clinical Implications, and Possible Therapeutic Interventions. Seminars in Dialysis, 32, 58-71.
https://doi.org/10.1111/sdi.12745
[15]  Roumeliotis, S., Eleftheriadis, T. and Liakopoulos, V. (2019) Is Oxidative Stress an Issue in Peritoneal Dialysis? Seminars in Dialysis, 32, 463-466.
https://doi.org/10.1111/sdi.12818
[16]  Kuo, H., Chen, H., Hsiao, H. and Chen, H. (2009) Heat Shock Response Protects Human Peritoneal Mesothelial Cells from Dialysate-Induced Oxidative Stress and Mitochondrial Injury. Nephrology Dialysis Transplantation, 24, 1799-1809.
https://doi.org/10.1093/ndt/gfn718
[17]  Huh, J.Y., Seo, E., Lee, H.B. and Ha, H. (2012) Glucose-Based Peritoneal Dialysis Solution Suppresses Adiponectin Synthesis through Oxidative Stress in an Experimental Model of Peritoneal Dialysis. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 32, 20-28.
https://doi.org/10.3747/pdi.2009.00228
[18]  Vostalova, J., Galandakova, A., Strebl, P., et al. (2012) Oxidative Stress in Patients on Regular Hemodialysis and Peritoneal Dialysis. Vnitřní Lékařství, 58, 466-472.
[19]  Serre, A.F., Marie, C., Beaujon, G., Betail, G., Cavaillon, J.M. and Deteix, P. (1997) Variations of Cytokine Levels and Production in CAPD Patients. The International Journal of Artificial Organs, 20, 614-621.
https://doi.org/10.1177/039139889702001104
[20]  Miyata, T., Kurokawa, K. and Van Ypersele de Strihou, C. (2000) Advanced Glycation and Lipoxidation End Products: Role of Reactive Carbonyl Compounds Generated during Carbohydrate and Lipid Metabolism. Journal of the American Society of Nephrology, 11, 1744-1752.
https://doi.org/10.1681/asn.v1191744
[21]  Song, D., Fang, G., Mao, S.-Z., et al. (2018) Selective Inhibition of Endothelial NF-kappaB Signaling Attenuates Chronic Intermittent Hypoxia-Induced Atherosclerosis in Mice. Atherosclerosis, 270, 68-75.
[22]  Roumeliotis, S., Dounousi, E., Salmas, M., Eleftheriadis, T. and Liakopoulos, V. (2020) Unfavorable Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: The Role of Oxidative Stress. Biomolecules, 10, Article No. 768.
https://doi.org/10.3390/biom10050768
[23]  Witowski, J., Topley, N., Jörres, A., Liberek, T., Coles, G.A. and Williams, J.D. (1995) Effect of Lactate-Buffered Peritoneal Dialysis Fluids on Human Peritoneal Mesothelial Cell Interleukin-6 and Prostaglandin Synthesis. Kidney International, 47, 282-293.
https://doi.org/10.1038/ki.1995.36
[24]  Mortier, S., Faict, D., Lameire, N.H. and De Vriese, A. (2005) Benefits of Switching from a Conventional to a Low-GDP Bicarbonate/Lactate-Buffered Dialysis Solution in a Rat Model. Kidney International, 67, 1559-1565.
https://doi.org/10.1111/j.1523-1755.2005.00237.x
[25]  Mortier, S., Faict, D., Schalkwijk, C.G., Lameire, N.H. and De Vriese, A.S. (2004) Long-Term Exposure to New Peritoneal Dialysis Solutions: Effects on the Peritoneal Membrane. Kidney International, 66, 1257-1265.
https://doi.org/10.1111/j.1523-1755.2004.00879.x
[26]  Zareie, M., Keuning, E.D., ter Wee, P.M., Schalkwijk, C.G., Beelen, R.H.J. and van den Born, J. (2005) Improved Biocompatibility of Bicarbonate/Lactate-Buffered PDF Is Not Related to Ph. Nephrology Dialysis Transplantation, 21, 208-216.
https://doi.org/10.1093/ndt/gfi188
[27]  Schmitt, C.P., Nau, B., Gemulla, G., Bonzel, K.E., Hölttä, T., Testa, S., et al. (2013) Effect of the Dialysis Fluid Buffer on Peritoneal Membrane Function in Children. Clinical Journal of the American Society of Nephrology, 8, 108-115.
https://doi.org/10.2215/cjn.00690112
[28]  Kaya, Y., Ari, E., Demir, H., Soylemez, N., Cebi, A., Alp, H., et al. (2011) Accelerated Atherosclerosis in Haemodialysis Patients; Correlation of Endothelial Function with Oxidative DNA Damage. Nephrology Dialysis Transplantation, 27, 1164-1169.
https://doi.org/10.1093/ndt/gfr443
[29]  Fassett, R.G., Driver, R., Healy, H., Ranganathan, D., Ratanjee, S., Robertson, I.K., et al. (2009) Comparison of Markers of Oxidative Stress, Inflammation and Arterial Stiffness between Incident Hemodialysis and Peritoneal Dialysis Patients—An Observational Study. BMC Nephrology, 10, Article No. 8.
https://doi.org/10.1186/1471-2369-10-8
[30]  Jiang, J., Chen, P., Chen, J., Yu, X., Xie, D., Mei, C., et al. (2012) Accumulation of Tissue Advanced Glycation End Products Correlated with Glucose Exposure Dose and Associated with Cardiovascular Morbidity in Patients on Peritoneal Dialysis. Atherosclerosis, 224, 187-194.
https://doi.org/10.1016/j.atherosclerosis.2012.06.022
[31]  Kocak, H., Gumuslu, S., Ermis, C., Mahsereci, E., Sahin, E., Gocmen, A.Y., et al. (2007) Oxidative Stress and Asymmetric Dimethylarginine Is Independently Associated with Carotid Intima Media Thickness in Peritoneal Dialysis Patients. American Journal of Nephrology, 28, 91-96.
https://doi.org/10.1159/000109397
[32]  Hu, M.C., Shi, M., Zhang, J., Quiñones, H., Griffith, C., Kuro-o, M., et al. (2011) Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. Journal of the American Society of Nephrology, 22, 124-136.
https://doi.org/10.1681/asn.2009121311
[33]  Oh, H.J., Nam, B.Y., Lee, M.J., Kim, C.H., Koo, H.M., Doh, F.M., et al. (2015) Decreased Circulating Klotho Levels in Patients Undergoing Dialysis and Relationship to Oxidative Stress and Inflammation. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 35, 43-51.
https://doi.org/10.3747/pdi.2013.00150
[34]  Szeto, C.C. and Johnson, D.W. (2017) Low GDP Solution and Glucose-Sparing Strategies for Peritoneal Dialysis. Seminars in Nephrology, 37, 30-42.
https://doi.org/10.1016/j.semnephrol.2016.10.005
[35]  Park, M.S., Kim, J.K., Holmes, C. and Weiss, a.M.F. (2000) Effects of Bicarbonate/lactate Solution on Peritoneal Advanced Glycosylation End-Product Accumulation. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 20, 33-38.
https://doi.org/10.1177/089686080002005s07
[36]  Htay, H., Johnson, D.W., Wiggins, K.J., Badve, S.V., Craig, J.C., Strippoli, G.F., et al. (2018) Biocompatible Dialysis Fluids for Peritoneal Dialysis. Cochrane Database of Systematic Reviews, 2018, CD007554.
https://doi.org/10.1002/14651858.cd007554.pub3
[37]  Thomas, S., Schenk, U., Fischer, F., Mettang, T., Passlick-Deetjen, J. and Kuhlmann, U. (1997) In Vitro Effects of Glucose Polymer-Containing Peritoneal Dialysis Fluids on Phagocytic Activity. American Journal of Kidney Diseases, 29, 246-253.
https://doi.org/10.1016/s0272-6386(97)90037-8
[38]  García-López, E., Lindholm, B. and Davies, S. (2012) An Update on Peritoneal Dialysis Solutions. Nature Reviews Nephrology, 8, 224-233.
https://doi.org/10.1038/nrneph.2012.13
[39]  Cueto-Manzano, A.M., Rojas-Campos, E., Martínez-Ramírez, H.R., Valera-González, I., Medina, M., Monteón, F., et al. (2006) Can the Inflammation Markers of Patients with High Peritoneal Permeability on Continuous Ambulatory Peritoneal Dialysis Be Reduced on Nocturnal Intermittent Peritoneal Dialysis? Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 26, 341-348.
https://doi.org/10.1177/089686080602600311
[40]  Liakopoulos, V., Roumeliotis, S., Bozikas, A., Eleftheriadis, T. and Dounousi, E. (2019) Antioxidant Supplementation in Renal Replacement Therapy Patients: Is There Evidence? Oxidative Medicine and Cellular Longevity, 2019, Article ID: 9109473.
https://doi.org/10.1155/2019/9109473
[41]  Cui, Y., Zhu, Q., Hao, H., Flaker, G.C. and Liu, Z. (2023) N-Acetylcysteine and Atherosclerosis: Promises and Challenges. Antioxidants, 12, Article No. 2073.
https://doi.org/10.3390/antiox12122073
[42]  Feldman, L., Shani, M., Efrati, S., Beberashvili, I., Yakov-Hai, I., Abramov, E., et al. (2011) N-Acetylcysteine Improves Residual Renal Function in Peritoneal Dialysis Patients: A Pilot Study. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 31, 545-550.
https://doi.org/10.3747/pdi.2009.00263

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133