|
脂肪酸代谢促进乳腺癌转移
|
Abstract:
脂代谢在乳腺癌转移过程中发挥着重要作用。癌症相关脂肪细胞(cancer-associated adipocyte, CAA)通过分泌游离脂肪酸(FA)和脂质代谢产物,直接参与乳腺癌细胞的脂肪酸代谢,提供能量支持并增强肿瘤的侵袭能力。CAA还分泌多种脂肪因子和炎症因子,激活信号通路,进一步推动乳腺癌的侵袭和转移。与此同时,乳腺癌细胞通过上调脂肪酸合成和氧化的关键酶,增强其侵袭性和转移能力。脂肪酸代谢不仅在原发性肿瘤中起到促进癌细胞侵袭的作用,还在脑、肺等远处转移部位中促进乳腺癌细胞的定植和扩展。本文综述了脂代谢在乳腺癌转移进展中的重要作用,并探讨了脂代谢相关的潜在治疗靶点,为乳腺癌的个性化治疗提供了新的思路。
Lipid metabolism plays an important role in breast cancer metastasis. Cancer-associated adipocyte (CAA) is directly involved in fatty acid metabolism of breast cancer cells by secreting free fatty acids (FA) and lipid metabolites, which provide energy support and enhance tumor invasion. CAA also secretes a variety of adipokines and inflammatory factors that activate signaling pathways that further promote breast cancer invasion and metastasis. At the same time, breast cancer cells enhance their invasiveness and metastatic ability by upregulating key enzymes for fatty acid synthesis and oxidation. Fatty acid metabolism plays a role in promoting cancer cell invasion not only in primary tumors, but also in colonization and expansion of breast cancer cells in distant metastatic sites such as brain and lung. This paper reviews the important role of lipid metabolism in the metastatic progression of breast cancer and discusses the potential therapeutic targets related to lipid metabolism, which provides new ideas for personalized treatment of breast cancer.
[1] | Seo, J., Kim, K.S., Park, J., Cho, J., Chang, H., Fukuda, J., et al. (2021) Metastasis-on-a-Chip Reveals Adipocyte-Derived Lipids Trigger Cancer Cell Migration via HIF-1α Activation in Cancer Cells. Biomaterials, 269, Article 120622. https://doi.org/10.1016/j.biomaterials.2020.120622 |
[2] | Lee Isla Crake, R., Phillips, E., Kleffmann, T. and Currie, M.J. (2019) Co-Culture with Human Breast Adipocytes Differentially Regulates Protein Abundance in Breast Cancer Cells. Cancer Genomics-Proteomics, 16, 319-332. https://doi.org/10.21873/cgp.20137 |
[3] | Rybinska, I., Mangano, N., Tagliabue, E. and Triulzi, T. (2021) Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. International Journal of Molecular Sciences, 22, Article 3775. https://doi.org/10.3390/ijms22073775 |
[4] | Balaban, S., Shearer, R.F., Lee, L.S., van Geldermalsen, M., Schreuder, M., Shtein, H.C., et al. (2017) Adipocyte Lipolysis Links Obesity to Breast Cancer Growth: Adipocyte-Derived Fatty Acids Drive Breast Cancer Cell Proliferation and Migration. Cancer & Metabolism, 5, Article No. 1. https://doi.org/10.1186/s40170-016-0163-7 |
[5] | Zaoui, M., Morel, M., Ferrand, N., Fellahi, S., Bastard, J., Lamazière, A., et al. (2019) Breast-Associated Adipocytes Secretome Induce Fatty Acid Uptake and Invasiveness in Breast Cancer Cells via CD36 Independently of Body Mass Index, Menopausal Status and Mammary Density. Cancers, 11, Article 2012. https://doi.org/10.3390/cancers11122012 |
[6] | Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Ory, D.S., et al. (2003) Triglyceride Accumulation Protects against Fatty Acid-Induced Lipotoxicity. Proceedings of the National Academy of Sciences, 100, 3077-3082. https://doi.org/10.1073/pnas.0630588100 |
[7] | Maguire, O.A., Ackerman, S.E., Szwed, S.K., Maganti, A.V., Marchildon, F., Huang, X., et al. (2021) Creatine-Mediated Crosstalk between Adipocytes and Cancer Cells Regulates Obesity-Driven Breast Cancer. Cell Metabolism, 33, 499-512.e6. https://doi.org/10.1016/j.cmet.2021.01.018 |
[8] | Munteanu, R., Onaciu, A., Moldovan, C., Zimta, A., Gulei, D., Paradiso, A., et al. (2020) Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics, 12, Article 402. https://doi.org/10.3390/pharmaceutics12050402 |
[9] | Choi, J., Cha, Y.J. and Koo, J.S. (2018) Adipocyte Biology in Breast Cancer: From Silent Bystander to Active Facilitator. Progress in Lipid Research, 69, 11-20. https://doi.org/10.1016/j.plipres.2017.11.002 |
[10] | Sultana, R., Kataki, A.C., Borthakur, B.B., Basumatary, T.K. and Bose, S. (2017) Imbalance in Leptin-Adiponectin Levels and Leptin Receptor Expression as Chief Contributors to Triple Negative Breast Cancer Progression in Northeast India. Gene, 621, 51-58. https://doi.org/10.1016/j.gene.2017.04.021 |
[11] | Chung, S.J., Nagaraju, G.P., Nagalingam, A., Muniraj, N., Kuppusamy, P., Walker, A., et al. (2017) ADIPOQ/Adiponectin Induces Cytotoxic Autophagy in Breast Cancer Cells through STK11/LKB1-Mediated Activation of the AMPK-ULK1 Axis. Autophagy, 13, 1386-1403. https://doi.org/10.1080/15548627.2017.1332565 |
[12] | Tuna, B.G., Cleary, M. and Dogan, S. (2019) Roles of Adiponectin Signaling Related Proteins in Mammary Tumor Development. Southern Clinics of Istanbul Eurasia, 30, 290-295. |
[13] | Kim, H.S., Jung, M., Choi, S.K., Woo, J., Piao, Y.J., Hwang, E.H., et al. (2018) IL-6-Mediated Cross-Talk between Human Preadipocytes and Ductal Carcinoma in Situ in Breast Cancer Progression. Journal of Experimental & Clinical Cancer Research, 37, Article No. 200. https://doi.org/10.1186/s13046-018-0867-3 |
[14] | Bochet, L., Lehuédé, C., Dauvillier, S., Wang, Y.Y., Dirat, B., Laurent, V., et al. (2013) Adipocyte-Derived Fibroblasts Promote Tumor Progression and Contribute to the Desmoplastic Reaction in Breast Cancer. Cancer Research, 73, 5657-5668. https://doi.org/10.1158/0008-5472.can-13-0530 |
[15] | Mukherjee, A., Bilecz, A.J. and Lengyel, E. (2022) The Adipocyte Microenvironment and Cancer. Cancer and Metastasis Reviews, 41, 575-587. https://doi.org/10.1007/s10555-022-10059-x |
[16] | Koundouros, N. and Poulogiannis, G. (2019) Reprogramming of Fatty Acid Metabolism in Cancer. British Journal of Cancer, 122, 4-22. https://doi.org/10.1038/s41416-019-0650-z |
[17] | Monaco, M.E. (2017) Fatty Acid Metabolism in Breast Cancer Subtypes. Oncotarget, 8, 29487-29500. https://doi.org/10.18632/oncotarget.15494 |
[18] | Hilvo, M., Denkert, C., Lehtinen, L., Müller, B., Brockmöller, S., Seppänen-Laakso, T., et al. (2011) Novel Theranostic Opportunities Offered by Characterization of Altered Membrane Lipid Metabolism in Breast Cancer Progression. Cancer Research, 71, 3236-3245. https://doi.org/10.1158/0008-5472.can-10-3894 |
[19] | Hosokawa, Y., Masaki, N., Takei, S., Horikawa, M., Matsushita, S., Sugiyama, E., et al. (2017) Recurrent Triple-Negative Breast Cancer (TNBC) Tissues Contain a Higher Amount of Phosphatidylcholine (32:1) than Non-Recurrent TNBC Tissues. PLOS ONE, 12, e0183724. https://doi.org/10.1371/journal.pone.0183724 |
[20] | Li, Q., Xia, J., Yao, Y., Gong, D., Shi, H. and Zhou, Q. (2013) Sulforaphane Inhibits Mammary Adipogenesis by Targeting Adipose Mesenchymal Stem Cells. Breast Cancer Research and Treatment, 141, 317-324. https://doi.org/10.1007/s10549-013-2672-1 |
[21] | Teufelsbauer, M., Rath, B., Plangger, A., Staud, C., Nanobashvili, J., Huk, I., et al. (2020) Effects of Metformin on Adipose-Derived Stromal Cell (ADSC)—Breast Cancer Cell Lines Interaction. Life Sciences, 261, Article 118371. https://doi.org/10.1016/j.lfs.2020.118371 |
[22] | Sonnenblick, A., Agbor-Tarh, D., Bradbury, I., Di Cosimo, S., Azim, H.A., Fumagalli, D., et al. (2017) Impact of Diabetes, Insulin, and Metformin Use on the Outcome of Patients with Human Epidermal Growth Factor Receptor 2-Positive Primary Breast Cancer: Analysis from the ALTTO Phase III Randomized Trial. Journal of Clinical Oncology, 35, 1421-1429. https://doi.org/10.1200/jco.2016.69.7722 |
[23] | Gruslova, A., McClellan, B., Balinda, H.U., Viswanadhapalli, S., Alers, V., Sareddy, G.R., et al. (2021) FASN Inhibition as a Potential Treatment for Endocrine-Resistant Breast Cancer. Breast Cancer Research and Treatment, 187, 375-386. https://doi.org/10.1007/s10549-021-06231-6 |
[24] | Zhou, C., He, X., Tong, C., Li, H., Xie, C., Wu, Y., et al. (2022) Cancer-Associated Adipocytes Promote the Invasion and Metastasis in Breast Cancer through LIF/CXCLs Positive Feedback Loop. International Journal of Biological Sciences, 18, 1363-1380. https://doi.org/10.7150/ijbs.65227 |
[25] | Liu, Q., Dong, H., Zhao, T., Yao, F., Xu, Y., Chen, B., et al. (2022) Cancer-Associated Adipocytes Release FUCA2 to Promote Aggressiveness in TNBC. Endocrine-Related Cancer, 29, 139-149. https://doi.org/10.1530/erc-21-0243 |
[26] | Wu, Q., Li, B., Li, Z., Li, J., Sun, S. and Sun, S. (2019) Cancer-Associated Adipocytes: Key Players in Breast Cancer Progression. Journal of Hematology & Oncology, 12, Article No. 95. https://doi.org/10.1186/s13045-019-0778-6 |
[27] | Liu, L., Wu, Y., Zhang, C., Zhou, C., Li, Y., Zeng, Y., et al. (2020) Cancer-Associated Adipocyte-Derived G-CSF Promotes Breast Cancer Malignancy via Stat3 Signaling. Journal of Molecular Cell Biology, 12, 723-737. https://doi.org/10.1093/jmcb/mjaa016 |
[28] | King, R.J., Singh, P.K. and Mehla, K. (2022) The Cholesterol Pathway: Impact on Immunity and Cancer. Trends in Immunology, 43, 78-92. https://doi.org/10.1016/j.it.2021.11.007 |
[29] | Panaroni, C., Fulzele, K., Mori, T., Siu, K.T., Onyewadume, C., Maebius, A., et al. (2022) Multiple Myeloma Cells Induce Lipolysis in Adipocytes and Uptake Fatty Acids through Fatty Acid Transporter Proteins. Blood, 139, 876-888. https://doi.org/10.1182/blood.2021013832 |
[30] | Mazurkiewicz, J., Simiczyjew, A., Dratkiewicz, E., Ziętek, M., Matkowski, R. and Nowak, D. (2021) Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. International Journal of Molecular Sciences, 22, Article 529. https://doi.org/10.3390/ijms22020529 |
[31] | Zhao, C., Wu, M., Zeng, N., Xiong, M., Hu, W., Lv, W., et al. (2020) Cancer-Associated Adipocytes: Emerging Supporters in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 39, Article No. 156. https://doi.org/10.1186/s13046-020-01666-z |
[32] | Carracedo, A., Cantley, L.C. and Pandolfi, P.P. (2013) Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nature Reviews Cancer, 13, 227-232. https://doi.org/10.1038/nrc3483 |
[33] | Samudio, I., Fiegl, M. and Andreeff, M. (2009) Mitochondrial Uncoupling and the Warburg Effect: Molecular Basis for the Reprogramming of Cancer Cell Metabolism. Cancer Research, 69, 2163-2166. https://doi.org/10.1158/0008-5472.can-08-3722 |
[34] | Wang, T., Fahrmann, J.F., Lee, H., Li, Y., Tripathi, S.C., Yue, C., et al. (2018) JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metabolism, 27, 136-150.e5. https://doi.org/10.1016/j.cmet.2017.11.001 |
[35] | Tan, Z., Xiao, L., Tang, M., Bai, F., Li, J., Li, L., et al. (2018) Targeting CPT1A-Mediated Fatty Acid Oxidation Sensitizes Nasopharyngeal Carcinoma to Radiation Therapy. Theranostics, 8, 2329-2347. https://doi.org/10.7150/thno.21451 |
[36] | Schafer, Z.T., Grassian, A.R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H.Y., et al. (2009) Antioxidant and Oncogene Rescue of Metabolic Defects Caused by Loss of Matrix Attachment. Nature, 461, 109-113. https://doi.org/10.1038/nature08268 |
[37] | Roongta, U.V., Pabalan, J.G., Wang, X., Ryseck, R., Fargnoli, J., Henley, B.J., et al. (2011) Cancer Cell Dependence on Unsaturated Fatty Acids Implicates Stearoyl-CoA Desaturase as a Target for Cancer Therapy. Molecular Cancer Research, 9, 1551-1561. https://doi.org/10.1158/1541-7786.mcr-11-0126 |
[38] | Luo, X., Cheng, C., Tan, Z., Li, N., Tang, M., Yang, L., et al. (2017) Emerging Roles of Lipid Metabolism in Cancer Metastasis. Molecular Cancer, 16, Article No. 76. https://doi.org/10.1186/s12943-017-0646-3 |
[39] | Igal, R.A. (2011) Roles of StearoylCoA Desaturase-1 in the Regulation of Cancer Cell Growth, Survival and Tumorigenesis. Cancers, 3, 2462-2477. https://doi.org/10.3390/cancers3022462 |
[40] | Huang, S.C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., Smith, A.M., et al. (2014) Cell-Intrinsic Lysosomal Lipolysis Is Essential for Alternative Activation of Macrophages. Nature Immunology, 15, 846-855. https://doi.org/10.1038/ni.2956 |
[41] | Nieman, K.M., Romero, I.L., Van Houten, B. and Lengyel, E. (2013) Adipose Tissue and Adipocytes Support Tumorigenesis and Metastasis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831, 1533-1541. https://doi.org/10.1016/j.bbalip.2013.02.010 |
[42] | Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L.N., et al. (2015) PD-1 Alters T-Cell Metabolic Reprogramming by Inhibiting Glycolysis and Promoting Lipolysis and Fatty Acid Oxidation. Nature Communications, 6, Article No. 6692. https://doi.org/10.1038/ncomms7692 |
[43] | Marchesini, N., Luberto, C. and Hannun, Y.A. (2003) Biochemical Properties of Mammalian Neutral Sphingomyelinase2 and Its Role in Sphingolipid Metabolism. Journal of Biological Chemistry, 278, 13775-13783. https://doi.org/10.1074/jbc.m212262200 |
[44] | Scaglia, N. and Igal, R.A. (2008) Inhibition of Stearoyl-CoA Desaturase 1 Expression in Human Lung Adenocarcinoma Cells Impairs Tumorigenesis. International Journal of Oncology, 33, 839-850. |
[45] | Li, J., Gu, D., Lee, S.S., Song, B., Bandyopadhyay, S., Chen, S., et al. (2016) Abrogating Cholesterol Esterification Suppresses Growth and Metastasis of Pancreatic Cancer. Oncogene, 35, 6378-6388. https://doi.org/10.1038/onc.2016.168 |
[46] | Heravi, G., Jang, H., Wang, X., Long, Z., Peng, Z., Kim, S., et al. (2022) Fatty Acid Desaturase 1 (FADS1) Is a Cancer Marker for Patient Survival and a Potential Novel Target for Precision Cancer Treatment. Frontiers in Oncology, 12, Article 942798. https://doi.org/10.3389/fonc.2022.942798 |
[47] | Ferraro, G.B., Ali, A., Luengo, A., Kodack, D.P., Deik, A., Abbott, K.L., et al. (2021) Fatty Acid Synthesis Is Required for Breast Cancer Brain Metastasis. Nature Cancer, 2, 414-428. https://doi.org/10.1038/s43018-021-00183-y |
[48] | Quail, D.F. and Joyce, J.A. (2017) The Microenvironmental Landscape of Brain Tumors. Cancer Cell, 31, 326-341. https://doi.org/10.1016/j.ccell.2017.02.009 |
[49] | Kiss, M., Van Gassen, S., Movahedi, K., Saeys, Y. and Laoui, D. (2018) Myeloid Cell Heterogeneity in Cancer: Not a Single Cell Alike. Cellular Immunology, 330, 188-201. https://doi.org/10.1016/j.cellimm.2018.02.008 |
[50] | Röhrig, F. and Schulze, A. (2016) The Multifaceted Roles of Fatty Acid Synthesis in Cancer. Nature Reviews Cancer, 16, 732-749. https://doi.org/10.1038/nrc.2016.89 |
[51] | Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C.S., et al. (2016) Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature, 541, 41-45. https://doi.org/10.1038/nature20791 |
[52] | Weng, Y., Tseng, H., Chen, Y., Shen, P., Al Haq, A.T., Chen, L., et al. (2019) MCT-1/miR-34a/IL-6/IL-6R Signaling Axis Promotes EMT Progression, Cancer Stemness and M2 Macrophage Polarization in Triple-Negative Breast Cancer. Molecular Cancer, 18, Article No. 42. https://doi.org/10.1186/s12943-019-0988-0 |
[53] | Biswas, S.K. and Mantovani, A. (2010) Macrophage Plasticity and Interaction with Lymphocyte Subsets: Cancer as a Paradigm. Nature Immunology, 11, 889-896. https://doi.org/10.1038/ni.1937 |