全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Covariant Newtonian Dynamics and the Principle of Material Frame-Indifference

DOI: 10.4236/aast.2024.94010, PP. 129-141

Keywords: Einstein, Galileo Galilei, Newton’s Second Law, Tensor Flight Dynamics, Computer Programming

Full-Text   Cite this paper   Add to My Lib

Abstract:

As all natural laws, Newtonian dynamics should be governed by Einstein’s Covariance Principle; i.e., being covariant under all coordinate transformations, even time-dependent transformations. But Newton’s Second Law, as it is generally understood, is unchanged only under Galilean transformations, which do not include time-dependent coordinate transformations. To achieve the covariant formulation of Newton’s Second Law, a distinction must be made between frames and coordinate systems, as advanced by the Principle of Material Frame-Indifference, and furthermore, the ordinary time derivative must be replaced by the rotational time derivative. Elevating Newton’s Second Law to covariancy has born many fruits in flight dynamics from the theoretical underpinning of unsteady flight maneuvers to the practical modeling of complex flight engagements in tensors, followed by efficient programming with matrices.

References

[1]  Einstein, A. (1916) Die Grundlagen der Allgemeinen Relativitätstheorie. Annalen der Physik, 49, 284-338.
[2]  Hibbeler, R.C. (1998) Engineering Mechanics-Dynamics. Prentice-Hall, Inc.
[3]  Newton, I. (1962) Mathematical Principles of Natural Philosophy, Translation. University of California Press.
[4]  Einstein, A. (1905) Zur Electrodynamik Bewegter Körper. Annalen der Physik, 322, 891-921.
https://doi.org/10.1002/andp.19053221004
[5]  Einstein, A. (1952) The Principle of Relativity. Dover.
[6]  Truesdell, C. and Noll, W. (1965) The Non-Linear Field Theories of Mechanics. In: Truesdell, C. and Noll, W., Eds., The Non-Linear Field Theories of Mechanics/Die Nicht-Linearen Feldtheorien der Mechanik, Springer, 1-541.
https://doi.org/10.1007/978-3-642-46015-9_1
[7]  Noll, W. (1988) Autobiographical Notes.
https://www.math.cmu.edu/~wn0g/noll/
[8]  Liu, I.S. (n.d.) Constitutive Theories: Basic Principles. Instituto de Matemática, Universidade Federal do Rio de Janeiro.
[9]  Britannica: Science.
https://www.britannica.com/science/science
[10]  Lumley, J.L. (1983) Turbulence Modeling. Journal of Applied Mechanics, 50, 1097-1103.
https://doi.org/10.1115/1.3167192
[11]  Kempers, L.J.T.M. (1987) The Principle of Material Frame-Indifference and the Covariance Principle. Il Nuovo Cimento B (1971-1996), 103, 227-236.
[12]  Liu, I.S. (2012) Further Remarks on Euclidean Objectivity and the Principle of Material Frame-Indifference. Instituto de Matematica, Universidade Federal do Rio de Janeiro.
[13]  Noll, W. (1995) On Material Frame-Indifference. Carnegie Mellon University, Research Report No. 95-NA-022.
[14]  Zipfel, P.H. (1971) On Flight Dynamics of Magnus Rotors. Ph.D. Thesis, The Catholic University of America.
[15]  Earman, J. and Glymour, C. (1978) Lost in the Tensors: Einstein’s Struggles with Covariance Principles 1912-1916. Studies in History and Philosophy of Science Part A, 9, 251-278.
https://doi.org/10.1016/0039-3681(78)90008-0
[16]  Ricci, G. and Levi-Civita, T. (1901) Methodes de Calcul Differentiel Absolu et Leurs Applications. Mathematische Annalen, 54, 125-201.
https://doi.org/10.1007/BF01450726
[17]  Wundheiler, A. (1932) Kovariante Ableitung und die Cesaroschen Unbeweglichkeitsbedingungen. Mathematische Zeitschrift, 36, 104-109.
https://doi.org/10.1007/BF01188610
[18]  Zipfel, P.H. (2014) Modeling and Simulation of Aerospace Vehicle Dynamics. 3rd Edition, American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/4.102509
[19]  Zipfel, P.H. (1973) Perturbation Methods in Atmospheric Flight Mechanics. AIAA Journal, 11, 11247-1251.
https://doi.org/10.2514/3.50574
[20]  Zipfel, P.H. (2023) Introduction to Tensor Flight Dynamics. 3rd Edition, MASTECH.
[21]  Zipfel, P.H. (2014) Building Aerospace Simulations in C++. 3rd Edition, American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/4.102530
[22]  Zipfel, P.H. (2014) Fundamentals of Six Degrees of Freedom Aerospace Simulation and Analysis in C++. 2nd Edition, American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/4.102516
[23]  Zipfel, P.H. (2014) Advanced Six Degrees of Freedom Aerospace Simulation and Analysis in C++. 2nd Edition, American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/4.102523
[24]  Zipfel, P.H. (2021) Tensor Flight Dynamics Workshop in Two Days. MASTECH.
[25]  Zipfel, P.H. (2024) Flight Dynamics Workshop in Three Days. 2nd Edition, MASTECH.
[26]  Zipfel, P.H. (2024) C++Aerospace Workshop in Two Days. 2nd Edition, MASTECH.
[27]  Zipfel, P.H. (2024) Missile and Rocket Simulation Workshop in Four Days. 2nd Edition, MASTECH.
[28]  Zipfel, P.H. (2024) Hypersonic Missile Simulation Workshop in One Day. MASTECH.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133