An interdisciplinary-field research brings new elements in bridging the gravitational interaction with the Standard Model, by focusing on 3 factors. The involvement of inductive and capacitive-like phase shifts in the gravitational interaction, the exploration of swapping between parameters of time and space, and the provision of a way to handle imaginary terms. The existence of phase shifts in the gravitational interaction is documented via re-interpretation of older quantitative predictions, and is specifically linked to the Higgs field mechanism. Same as in electronics, a phase shift splits energy into real and imaginary coordinates. This allows to quantitatively treat inertia as an inductive-like potential, alongside the swapping of parameters of time and space. That also allows to treat the Bernoulli pressure in quantitative analogy to a magnetic potential, as well as barrier penetration in quantitative symmetry to the crossing of displacement-current through a capacitor. The findings shed light on how fields & forces, including reaction forces function, while the role of imaginary numbers is analyzed. Interaction of fields with quantum particles is discussed to involve a Fourier-series effect that results in energy quantization. The role of phase shifts becomes essential in bridging between wave nature and effects of relativity, and the Weinberg angle is explained to have the role of an inductive-like shift. The precise value of this angle is proposed to link to elementary particles’ properties like spin, or the value of quarks’ charge. Symmetries introduced allow to address the abundance of matter over antimatter in certain analogy to theory from electronics, to address galaxy rotation curves through an interaction involving negative energy, and more. The new concepts open up room for advancements in energy exploitation over interdisciplinary areas.
References
[1]
Feynman, R.P. (1964) The Speed of Clocks in a Gravitational Field. Feynman Lectures on Physics, II, 42-46. http://www.feynmanlectures.caltech.edu/II_42.html
[2]
Feynman, R.P. (1949) The Theory of Positrons. PhysicalReview, 76, 749-759. https://doi.org/10.1103/physrev.76.749
[3]
Cramer, J.G., Forward, R.L., Morris, M.S., Visser, M., Benford, G. and Landis, G.A. (1995) Natural Wormholes as Gravitational Lenses. PhysicalReviewD, 51, 3117-3120. https://doi.org/10.1103/physrevd.51.3117
[4]
Abramowicz, M.A. (1993) Black Holes and the Centrifugal Force Paradox. ScientificAmerican, 266, 74-81. https://doi.org/10.1038/scientificamerican0393-74
[5]
Tsikoudas C. (2022) Chapter 6.2: The Gravitomotive Potential in Inertia & Vortex Flow. In: Tsikoudas, C., Ed., Time vs Space, and the Universe Beyond the Standard Model, Amazon Digital Services LLC, 139-148. https://inspirehep.net/literature/2060341
[6]
Woodley, J. and Mojahedi, M. (2010) On the Signs of the Imaginary Parts of the Effective Permittivity and Permeability in Metamaterials. JournaloftheOpticalSocietyofAmericaB, 27, 1016-1021. https://doi.org/10.1364/josab.27.001016
[7]
Singh, C., Bindra Narang, S., Hudiara, I.S., Sudheendran, K. and James Raju, K.C. (2008) Complex Permittivity and Complex Permeability of Sr Ions Substituted Ba Ferrite at X-Band. JournalofMagnetismandMagneticMaterials, 320, 1657-1665. https://doi.org/10.1016/j.jmmm.2007.11.002
[8]
Heras, J.A. (2011) A Formal Interpretation of the Displacement Current and the Instantaneous Formulation of Maxwell’s Equations. AmericanJournalofPhysics, 79, 409-416. https://doi.org/10.1119/1.3533223
[9]
Enders, A. and Nimtz, G. (1993) Evanescent-Mode Propagation and Quantum Tunneling. PhysicalReviewE, 48, 632-634. https://doi.org/10.1103/physreve.48.632
[10]
Eisberg R. and Resnick R. (1985) 5.2 Plausibility Argument Leading to Schroedinger’s Equation. In: Eisberg, R., Ed., Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition), John Wiley & Sons, 128-134. https://www.academia.edu/34663945/Quantum_physics_2nd_eisbergresnick
[11]
Bowen, D. (2016) The Real Reason Why the Electron’s Bare g-Factor Is 2 Times Classical. JournalofModernPhysics, 7, 1200-1209. https://doi.org/10.4236/jmp.2016.710109
[12]
Smarandache, F. (2012) Centric Cardinal Sine Function. International Journal of Geometry, 1, 27-40. https://digitalrepository.unm.edu/math_fsp/471
[13]
Feynman, R.P. (1964) The Relativity of Magnetic and Electric Fields. Feynman Lectures on Physics, II, 13-16. https://www.feynmanlectures.caltech.edu/II_13.html
[14]
Hautmann, F. (2010) An Introduction to QED & QCD. https://www-thphys.physics.ox.ac.uk/people/FrancescoHautmann/Ralhep/ralss10_p.pdf
[15]
Kowitt, M. (1996) Gravitational Repulsion and Dirac Antimatter. InternationalJournalofTheoreticalPhysics, 35, 605-631. https://doi.org/10.1007/bf02082828
[16]
Williams, R.K. (2005) Gravitomagnetic Field and Penrose Scattering Processes. AnnalsoftheNewYorkAcademyofSciences, 1045, 232-245. https://doi.org/10.1196/annals.1350.018
[17]
Bheghella-Bartoli, S., Bhujbal, P.M. and Nas, A. (2014) Confirmation of Antimatter Detection via Santilli Telescope with Concave Lenses. American Journal of Modern Physics, 4, 5-11. https://studylib.net/doc/7053859/confirmation-of-antimatter-detection-via-santilli-telesco
[18]
Santilli, R.M. (2014) Apparent Detection of Antimatter Galaxies via a Refractive Tele-scope with Concave Lenses. https://www.prweb.com/releases/2014/02/prweb11589410.htm
[19]
Davis, R.J., Unwin, S.C. and Muxlow, T.W.B. (1991) Large-Scale Superluminal Motion in the Quasar 3c273. Nature, 354, 374-376. https://doi.org/10.1038/354374a0
[20]
Mirabel, I.F. and Rodríguez, L.F. (1994) A Superluminal Source in the Galaxy. Nature, 371, 46-48. https://doi.org/10.1038/371046a0
[21]
Recami, E., Castellino, A., Maccarrone, G.D. and Rodonò, M. (1986) Considerations about the Apparent “Superluminal Expansions” Observed in Astrophysics. IlNuovoCimentoBSeries11, 93, 119-144. https://doi.org/10.1007/bf02722327
[22]
Tsikoudas, C. (2022) Chapter 4: Cosmic Regions & Their Particle Inhabitants. In: Tsikoudas, C., Ed., TimevsSpace, andtheUniverseBeyondtheStandardModel, Amazon Digital Services LLC, 19-32. https://inspirehep.net/literature/2060341
[23]
Bartoli, S.B. (2017) Trajectories of Antimatter Asteroids in Our Solar System. AIPConferenceProceedings, 1798, Article ID: 020020. https://doi.org/10.1063/1.4972612
[24]
Woosley, S. and Janka, T. (2005) The Physics of Core-Collapse Supernovae. NaturePhysics, 1, 147-154. https://doi.org/10.1038/nphys172
[25]
Steiner, A.W., Hempel, M. and Fischer, T. (2013) Core-Collapse Supernova Equations of State Based on Neutron Star Observations. TheAstrophysicalJournal, 774, Article 17. https://doi.org/10.1088/0004-637x/774/1/17
[26]
Hayakawa, T., Iwamoto, N., Kajino, T., Shizuma, T., Umeda, H. and Nomoto, K. (2006) Principle of Universality of γ-Process Nucleosynthesis in Core-Collapse Supernova Explosions. TheAstrophysicalJournal, 648, L47-L50. https://doi.org/10.1086/507703
[27]
Mann, A.K. (1997) Shadow of a Star: The Neutrino Story of Supernova 1987A. W H Freeman & Co., 122. https://www.amazon.com/Shadow-Star-Neutrino-Story-Supernova/dp/0716730979
[28]
Fryer, C.L. and New, K.C.B. (2003) Gravitational Waves from Gravitational Collapse. LivingReviewsinRelativity, 6, Article No. 2. https://doi.org/10.12942/lrr-2003-2
[29]
Becker, W. (2006) Old Pulsars Still Have New Tricks to Teach Us. The European Space Agency. https://www.esa.int/Science_Exploration/Space_Science/Old_pulsars_still_have_new_tricks_to_teach_us
[30]
Becker, W., Kramer, M., Jessner, A., Taam, R.E., Jia, J.J., Cheng, K.S., etal. (2006) A Multiwavelength Study of the Pulsar PSR B1929+10 and Its X-Ray Trail. TheAstrophysicalJournal, 645, 1421-1435. https://doi.org/10.1086/504458
[31]
Mooley, K.P., Deller, A.T., Gottlieb, O., Nakar, E., Hallinan, G., Bourke, S., etal. (2018) Superluminal Motion of a Relativistic Jet in the Neutron-Star Merger Gw170817. Nature, 561, 355-359. https://doi.org/10.1038/s41586-018-0486-3
[32]
Garrett, K. and Duda, G. (2011) Dark Matter: A Primer. AdvancesinAstronomy, 2011, Article ID: 968283. https://doi.org/10.1155/2011/968283
[33]
Corbelli, E. and Salucci, P. (2000) The Extended Rotation Curve and the Dark Matter Halo of M33. MonthlyNoticesoftheRoyalAstronomicalSociety, 311, 441-447. https://doi.org/10.1046/j.1365-8711.2000.03075.x
[34]
Milgrom, M. (1983) A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. TheAstrophysicalJournal, 270, 365-370. https://doi.org/10.1086/161130
[35]
Tsikoudas, C. (2022) Chapter 5.4: The Imaginary Gravitomagnetic Field. In: Tsikoudas, C., Ed., TimevsSpace, andtheUniverseBeyondtheStandardModel, Amazon Digital Services LLC., 90-128. https://inspirehep.net/literature/2060341
[36]
Beall, J.H. (2014) A Review of Astrophysical Jets. ActaPolytechnicaCTUProceedings, 1, 259-264. https://doi.org/10.14311/app.2014.01.0259
[37]
Miller-Jones, J.C.A., Tetarenko, A.J., Sivakoff, G.R., Middleton, M.J., Altamirano, D., Anderson, G.E., etal. (2019) A Rapidly Changing Jet Orientation in the Stellar-Mass Black-Hole System V404 Cygni. Nature, 569, 374-377. https://doi.org/10.1038/s41586-019-1152-0
[38]
Ciufolini, I. and Pavlis, E.C. (2004) A Confirmation of the General Relativistic Prediction of the Lense-Thirring Effect. Nature, 431, 958-960. https://doi.org/10.1038/nature03007
[39]
Aad, G., Abajyan, T., Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., etal. (2013) Evidence for the Spin-0 Nature of the Higgs Boson Using ATLAS Data. PhysicsLettersB, 726, 120-144. https://doi.org/10.1016/j.physletb.2013.08.026
[40]
Talios, V. (2023) The Standard Model Theory [May Be] a Wrong Theory. JournalofHighEnergyPhysics, GravitationandCosmology, 9, 602-610. https://doi.org/10.4236/jhepgc.2023.93050
[41]
Ulaanbaatar, T. (2023) Supreme Theory of Everything: The Fundamental Forces in Quantum Hystereris. Journal of Applied Mathematics and Physics, 11, 3274-3285.
[42]
Mongan, T.R. (2024) Standard Model Fermion Masses and Charges from Holographic Analysis. JournalofModernPhysics, 15, 796-803. https://doi.org/10.4236/jmp.2024.156035