全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于肠道菌群探讨中医药治疗动脉粥样硬化的研究进展
Exploring the Research Progress of Traditional Chinese Medicine in the Treatment of Atherosclerosis Based on Intestinal Flora

DOI: 10.12677/acm.2024.14112870, PP. 242-248

Keywords: 中医药,肠道菌群,动脉粥样硬化,研究进展
Chinese Medicine
, Intestinal Flora, Atherosclerosis, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

动脉粥样硬化作为心血管疾病的主要病理基础,其发病机制复杂且多样,涉及脂质代谢异常、炎症反应、遗传及血管内皮损伤等多个方面。近年来,肠道菌群作为人体内部微生态系统的重要组成部分,其在动脉粥样硬化发生发展中的作用逐渐受到广泛关注。中医药,作为传统医学的瑰宝,凭借其独特的理论体系和治疗手段,在调节肠道菌群、防治动脉粥样硬化方面展现出了显著的潜力与优势。本文旨在全面综述中医药对肠道菌群与动脉粥样硬化关系的研究进展及治疗现状,探讨其潜在机制与临床应用前景。
Atherosclerosis, as the main pathological basis of cardiovascular disease, has a complex and diverse pathogenesis involving abnormal lipid metabolism, inflammatory response, genetics and endothelial damage. In recent years, the role of intestinal flora in the development of atherosclerosis, as an important part of the internal microecosystem of the human body, has received widespread attention. Traditional Chinese medicine (TCM), as a treasure of traditional medicine, has shown remarkable potential and advantages in regulating intestinal flora and preventing atherosclerosis by virtue of its unique theoretical system and therapeutic means. The aim of this paper is to comprehensively review the research progress and treatment status of TCM on the relationship between intestinal flora and atherosclerosis, and to explore its potential mechanism and clinical application prospect.

References

[1]  Sanchez-Rodriguez, E., Egea-Zorrilla, A., Plaza-Díaz, J., Aragón-Vela, J., Muñoz-Quezada, S., Tercedor-Sánchez, L., et al. (2020) The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients, 12, Article 605.
https://doi.org/10.3390/nu12030605
[2]  刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 中国心血管杂志, 2024, 29(4): 305-324.
[3]  Tang, W.H.W., Kitai, T. and Hazen, S.L. (2017) Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 120, 1183-1196.
https://doi.org/10.1161/circresaha.117.309715
[4]  Chen, Y., Zhou, J. and Wang, L. (2021) Role and Mechanism of Gut Microbiota in Human Disease. Frontiers in Cellular and Infection Microbiology, 11, Article 625913.
https://doi.org/10.3389/fcimb.2021.625913
[5]  Barko, P.C., McMichael, M.A., Swanson, K.S. and Williams, D.A. (2017) The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 32, 9-25.
https://doi.org/10.1111/jvim.14875
[6]  Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533.
https://doi.org/10.1371/journal.pbio.1002533
[7]  Emoto, T., Yamashita, T., Kobayashi, T., Sasaki, N., Hirota, Y., Hayashi, T., et al. (2016) Characterization of Gut Microbiota Profiles in Coronary Artery Disease Patients Using Data Mining Analysis of Terminal Restriction Fragment Length Polymorphism: Gut Microbiota Could Be a Diagnostic Marker of Coronary Artery Disease. Heart and Vessels, 32, 39-46.
https://doi.org/10.1007/s00380-016-0841-y
[8]  Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I. (2006) An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031.
https://doi.org/10.1038/nature05414
[9]  Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R. and Gordon, J.I. (2009) The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science Translational Medicine, 1, 6ra14.
https://doi.org/10.1126/scitranslmed.3000322
[10]  朱琳, 蒯铮, 宋乐, 等. 清除肠道共生菌群对ApoE~(-/-)小鼠动脉粥样硬化的影响[J]. 复旦学报(医学版), 2023, 50(6): 820-828.
[11]  Kozarov, E.V., Dorn, B.R., Shelburne, C.E., Dunn, W.A. and Progulske-Fox, A. (2005) Human Atherosclerotic Plaque Contains Viable Invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, e17-e18.
https://doi.org/10.1161/01.atv.0000155018.67835.1a
[12]  Mitra, S., Drautz-Moses, D.I., Alhede, M., Maw, M.T., Liu, Y., Purbojati, R.W., et al. (2015) In Silico Analyses of Metagenomes from Human Atherosclerotic Plaque Samples. Microbiome, 3, Article No. 38.
https://doi.org/10.1186/s40168-015-0100-y
[13]  Jonsson, A.L. and Bäckhed, F. (2016) Role of Gut Microbiota in Atherosclerosis. Nature Reviews Cardiology, 14, 79-87.
https://doi.org/10.1038/nrcardio.2016.183
[14]  Yu, H., Li, L., Deng, Y., Zhang, G., Jiang, M., Huang, H., et al. (2022) The Relationship between the Number of Stenotic Coronary Arteries and the Gut Microbiome in Coronary Heart Disease Patients. Frontiers in Cellular and Infection Microbiology, 12, Article 903828.
https://doi.org/10.3389/fcimb.2022.903828
[15]  Lerner, A. (2021) Feed Your Microbiome and Your Heart: The Gut-Heart Axis. Frontiers in Bioscience, 26, 468-477.
https://doi.org/10.2741/4902
[16]  Fan, Y. and Pedersen, O. (2020) Gut Microbiota in Human Metabolic Health and Disease. Nature Reviews Microbiology, 19, 55-71.
https://doi.org/10.1038/s41579-020-0433-9
[17]  de Vos, W.M., Tilg, H., Van Hul, M. and Cani, P.D. (2022) Gut Microbiome and Health: Mechanistic Insights. Gut, 71, 1020-1032.
https://doi.org/10.1136/gutjnl-2021-326789
[18]  Wang, C., Ma, Q. and Yu, X. (2023) Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clinical Interventions in Aging, 18, 1749-1767.
https://doi.org/10.2147/cia.s431220
[19]  Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R.G., Krausz, K.W., et al. (2014) Intestinal Farnesoid X Receptor Signaling Promotes Nonalcoholic Fatty Liver Disease. Journal of Clinical Investigation, 125, 386-402.
https://doi.org/10.1172/jci76738
[20]  王一华, 蒋玉娇, 门冰欣, 等. 短链脂肪酸与动脉粥样硬化关系的研究进展[J]. 临床心血管病杂志, 2024, 40(8): 675-680.
[21]  Zhu, Y., Li, Q. and Jiang, H. (2020) Gut Microbiota in Atherosclerosis: Focus on Trimethylamine N‐oxide. APMIS, 128, 353-366.
https://doi.org/10.1111/apm.13038
[22]  Wei, X., Tao, J., Xiao, S., Jiang, S., Shang, E., Zhu, Z., et al. (2018) Xiexin Tang Improves the Symptom of Type 2 Diabetic Rats by Modulation of the Gut Microbiota. Scientific Reports, 8, Article No. 3685.
https://doi.org/10.1038/s41598-018-22094-2
[23]  Zhu, B., Zhai, Y., Ji, M., Wei, Y., Wu, J., Xue, W., et al. (2020) Alisma Orientalis Beverage Treats Atherosclerosis by Regulating Gut Microbiota in ApoE-/- Mice. Frontiers in Pharmacology, 11, Article 570555.
https://doi.org/10.3389/fphar.2020.570555
[24]  袁晓雯, 姜楠, 柏冬, 等. 桂枝汤调控免疫和肠道菌群抗动脉粥样硬化的作用[J]. 中国实验方剂学杂志, 2021, 27(4): 24-29.
[25]  卢永康, 陈窕圆, 庄贤勉, 等. 基于调节肠道菌群失衡的四君子汤干预心力衰竭大鼠机制研究[J]. 中国中医药信息杂志, 2021, 28(4): 81-87.
[26]  Liu, F., Wen, J., Hou, J., Zhang, S., Sun, C., Zhou, L., et al. (2021) Gastrodia Remodels Intestinal Microflora to Suppress Inflammation in Mice with Early Atherosclerosis. International Immunopharmacology, 96, Article ID: 107758.
https://doi.org/10.1016/j.intimp.2021.107758
[27]  Liu, J., Yue, S., Yang, Z., Feng, W., Meng, X., Wang, A., et al. (2018) Oral Hydroxysafflor Yellow a Reduces Obesity in Mice by Modulating the Gut Microbiota and Serum Metabolism. Pharmacological Research, 134, 40-50.
https://doi.org/10.1016/j.phrs.2018.05.012
[28]  Liu, S., He, F., Zheng, T., Wan, S., Chen, J., Yang, F., et al. (2021) Ligustrum robustum Alleviates Atherosclerosis by Decreasing Serum TMAO, Modulating Gut Microbiota, and Decreasing Bile Acid and Cholesterol Absorption in Mice. Molecular Nutrition & Food Research, 65, Article ID: 2100014.
https://doi.org/10.1002/mnfr.202100014
[29]  贾艾玲, 张宇航, 刁元元, 等. 刺五加乙酸乙酯部位对ApoE~(-/-)动脉粥样硬化小鼠肠道菌群的影响[J]. 中国实验方剂学杂志, 2022, 28(5): 108-115.
[30]  王继婷, 吉麟, 范光河, 等. 阿魏酸抗动脉粥样硬化的机制及进展[J]. 现代食品科技, 2023, 39(11): 342-353.
[31]  付希佳, 左效衢, 王凤志. 脂必泰胶囊对高脂血症合并颈动脉斑块病人肠道菌群的影响[J]. 中西医结合心脑血管病杂志, 2024, 22(15): 2861-2864.
[32]  芦瑞霞, 林文勇, 靳琪鹏, 等. 灵宝护心丹对动脉粥样硬化小鼠肠道黏膜屏障和肠道菌群的影响[J]. 中草药, 2024, 55(12): 4075-4083.
[33]  Qi, Y., Liu, W., Yan, X., Zhang, C., Zhang, C., Liu, L., et al. (2022) Tongxinluo May Alleviate Inflammation and Improve the Stability of Atherosclerotic Plaques by Changing the Intestinal Flora. Frontiers in Pharmacology, 13, Article 805266.
https://doi.org/10.3389/fphar.2022.805266
[34]  沈宇平, 陈以国, 成泽东, 等. 基于16S rRNA技术研究电针对动脉粥样硬化兔动脉斑块及肠道菌群科水平的影响[J]. 中华中医药杂志, 2021, 36(3): 1659-1662.
[35]  Baxter, N.T., Lesniak, N.A., Sinani, H., Schloss, P.D. and Koropatkin, N.M. (2019) The Glucoamylase Inhibitor Acarbose Has a Diet-Dependent and Reversible Effect on the Murine Gut Microbiome. mSphere, 4, e00528-18.
https://doi.org/10.1128/msphere.00528-18
[36]  Liu, B., Zhang, Y., Wang, R., An, Y., Gao, W., Bai, L., et al. (2018) Western Diet Feeding Influences Gut Microbiota Profiles in ApoE Knockout Mice. Lipids in Health and Disease, 17, Article No. 159.
https://doi.org/10.1186/s12944-018-0811-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133