全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

宫内感染与早产儿脑损伤的研究进展
Research Progress on Intrauterine Infection and Brain Injury in Premature Infants

DOI: 10.12677/acm.2024.14112865, PP. 203-210

Keywords: 宫内感染,早产儿脑损伤,炎症,发病机制,干预措施
Intrauterine Infection
, Premature Infant Brain Injury, Inflammation, Pathogenesis, Intervention Measures

Full-Text   Cite this paper   Add to My Lib

Abstract:

宫内感染是导致早产儿脑损伤的重要因素之一,近年来的研究揭示了其在导致早产儿脑损伤中的关键作用。宫内感染通过多种机制对早产儿的大脑发育造成影响,包括炎症反应、氧化应激和血脑屏障的破坏。现研究对宫内感染机制的深入理解,以及早期诊断和干预策略的探索显示通过抗感染、亚低温、促红细胞生成素、高压氧以及干细胞靶向治疗等可能有助于减少宫内感染对早产儿的负面影响。未来的研究需要进一步探索宫内感染与早产儿脑损伤之间的复杂关系,并研制更有效的干预措施,以改善早产儿的长期神经发育预后。
Intrauterine infection is one of the important factors leading to brain damage in premature infants, and recent studies have revealed its key role in causing brain damage in premature infants. Intrauterine infection affects the brain development of premature infants through various mechanisms, including inflammatory response, oxidative stress, and disruption of the blood-brain barrier. The in-depth understanding of the mechanism of intrauterine infection and the exploration of early diagnosis and intervention strategies have shown that anti-infection, hypothermia, erythropoietin, hyperbaric oxygen, and targeted stem cell therapy may help reduce the negative impact of intrauterine infection on premature infants. Future research needs to further explore the complex relationship between intrauterine infection and brain injury in premature infants, and develop more effective intervention measures to improve the long-term neurodevelopmental prognosis of premature infants.

References

[1]  (2021) Global, Regional, and National Progress towards Sustainable Development Goal 3.2 for Neonatal and Child Health: All-Cause and Cause-Specific Mortality Findings from the Global Burden of Disease Study 2019. Lancet, 398, 870-905.
[2]  Ohuma, E.O., Moller, A., Bradley, E., Chakwera, S., Hussain-Alkhateeb, L., Lewin, A., et al. (2023) National, Regional, and Global Estimates of Preterm Birth in 2020, with Trends from 2010: A Systematic Analysis. The Lancet, 402, 1261-1271.
https://doi.org/10.1016/s0140-6736(23)00878-4
[3]  Saigal, S. and Doyle, L.W. (2008) An Overview of Mortality and Sequelae of Preterm Birth from Infancy to Adulthood. The Lancet, 371, 261-269.
https://doi.org/10.1016/s0140-6736(08)60136-1
[4]  Teune, M.J., Bakhuizen, S., Gyamfi Bannerman, C., Opmeer, B.C., van Kaam, A.H., van Wassenaer, A.G., et al. (2011) A Systematic Review of Severe Morbidity in Infants Born Late Preterm. American Journal of Obstetrics and Gynecology, 205, 374.e1-374.e9.
https://doi.org/10.1016/j.ajog.2011.07.015
[5]  Fernández de Gamarra-Oca, L., Ojeda, N., Gómez-Gastiasoro, A., Peña, J., Ibarretxe-Bilbao, N., García-Guerrero, M.A., et al. (2021) Long-Term Neurodevelopmental Outcomes after Moderate and Late Preterm Birth: A Systematic Review. The Journal of Pediatrics, 237, 168-176.e11.
https://doi.org/10.1016/j.jpeds.2021.06.004
[6]  冉雨鑫, 尹楠林, 漆洪波. 早产发病机制的新进展[J]. 实用妇产科杂志, 2019, 35(7): 481-483.
[7]  Eastman, N.J. and DeLeon, M. (1955) The Etiology of Cerebral Palsy. American Journal of Obstetrics and Gynecology, 69, 950-961.
https://doi.org/10.1016/0002-9378(55)90094-6
[8]  Bear, J.J. and Wu, Y.W. (2016) Maternal Infections during Pregnancy and Cerebral Palsy in the Child. Pediatric Neurology, 57, 74-79.
https://doi.org/10.1016/j.pediatrneurol.2015.12.018
[9]  Strunk, T., Inder, T., Wang, X., Burgner, D., Mallard, C. and Levy, O. (2014) Infection-Induced Inflammation and Cerebral Injury in Preterm Infants. The Lancet Infectious Diseases, 14, 751-762.
https://doi.org/10.1016/s1473-3099(14)70710-8
[10]  Lettieri, L., Vintzileos, A.M., Rodis, J.F., Albini, S.M. and Salafia, C.M. (1993) Does “Idiopathic” Preterm Labor Resulting in Preterm Birth Exist? American Journal of Obstetrics and Gynecology, 168, 1480-1485.
https://doi.org/10.1016/s0002-9378(11)90785-6
[11]  Romero, R., Espinoza, J., Kusanovic, J., Gotsch, F., Hassan, S., Erez, O., et al. (2006) The Preterm Parturition Syndrome. BJOG: An International Journal of Obstetrics & Gynaecology, 113, 17-42.
https://doi.org/10.1111/j.1471-0528.2006.01120.x
[12]  Stoll, B.J., Hansen, N.I., Bell, E.F., Shankaran, S., Laptook, A.R., Walsh, M.C., et al. (2010) Neonatal Outcomes of Extremely Preterm Infants from the NICHD Neonatal Research Network. Pediatrics, 126, 443-456.
https://doi.org/10.1542/peds.2009-2959
[13]  单若冰. 宫内感染与新生儿肺疾病[J]. 中国小儿急救医学, 2016, 23(5): 304-307, 311.
[14]  Shatrov, J.G., Birch, S.C.M., Lam, L.T., Quinlivan, J.A., McIntyre, S. and Mendz, G.L. (2010) Chorioamnionitis and Cerebral Palsy. Obstetrics & Gynecology, 116, 387-392.
https://doi.org/10.1097/aog.0b013e3181e90046
[15]  Pavlidis, I., Spiller, O.B., Sammut Demarco, G., MacPherson, H., Howie, S.E.M., Norman, J.E., et al. (2020) Cervical Epithelial Damage Promotes Ureaplasma Parvum Ascending Infection, Intrauterine Inflammation and Preterm Birth Induction in Mice. Nature Communications, 11, Article No. 199.
https://doi.org/10.1038/s41467-019-14089-y
[16]  Witt, A., Berger, A., Gruber, C.J., Petricevic, L., Apfalter, P., Worda, C., et al. (2005) Increased Intrauterine Frequency of Ureaplasma Urealyticum in Women with Preterm Labor and Preterm Premature Rupture of the Membranes and Subsequent Cesarean Delivery. American Journal of Obstetrics and Gynecology, 193, 1663-1669.
https://doi.org/10.1016/j.ajog.2005.03.067
[17]  Seliga-Siwecka, J.P. and Kornacka, M.K. (2013) Neonatal Outcome of Preterm Infants Born to Mothers with Abnormal Genital Tract Colonisation and Chorioamnionitis: A Cohort Study. Early Human Development, 89, 271-275.
https://doi.org/10.1016/j.earlhumdev.2012.10.003
[18]  Filipovich, Y., Klein, J., Zhou, Y. and Hirsch, E. (2016) Maternal and Fetal Roles in Bacterially Induced Preterm Labor in the Mouse. American Journal of Obstetrics and Gynecology, 214, 386.e1-386.e9.
https://doi.org/10.1016/j.ajog.2015.10.014
[19]  Elovitz, M.A. and Mrinalini, C. (2004) Animal Models of Preterm Birth. Trends in Endocrinology & Metabolism, 15, 479-487.
https://doi.org/10.1016/j.tem.2004.10.009
[20]  Wahid, H.H., Chin, P.Y., Sharkey, D.J., Diener, K.R., Hutchinson, M.R., Rice, K.C., et al. (2020) Toll-Like Receptor-4 Antagonist (+)-Naltrexone Protects against Carbamyl-Platelet Activating Factor (cPAF)-Induced Preterm Labor in Mice. The American Journal of Pathology, 190, 1030-1045.
https://doi.org/10.1016/j.ajpath.2020.01.008
[21]  Deng, W., Yuan, J., Cha, J., Sun, X., Bartos, A., Yagita, H., et al. (2019) Endothelial Cells in the Decidual Bed Are Potential Therapeutic Targets for Preterm Birth Prevention. Cell Reports, 27, 1755-1768.e4.
https://doi.org/10.1016/j.celrep.2019.04.049
[22]  Bakardjiev, A. (2015) Stillbirth Prevented by Signal Blockade. Nature, 520, 627-628.
https://doi.org/10.1038/520627a
[23]  Green, E.S. and Arck, P.C. (2020) Pathogenesis of Preterm Birth: Bidirectional Inflammation in Mother and Fetus. Seminars in Immunopathology, 42, 413-429.
https://doi.org/10.1007/s00281-020-00807-y
[24]  Nadeau, H.C.G., Subramaniam, A. and Andrews, W.W. (2016) Infection and Preterm Birth. Seminars in Fetal and Neonatal Medicine, 21, 100-105.
https://doi.org/10.1016/j.siny.2015.12.008
[25]  Pararas, M.V., Skevaki, C.L. and Kafetzis, D.A. (2006) Preterm Birth Due to Maternal Infection: Causative Pathogens and Modes of Prevention. European Journal of Clinical Microbiology & Infectious Diseases, 25, 562-569.
https://doi.org/10.1007/s10096-006-0190-3
[26]  Khwaja, O. and Volpe, J.J. (2007) Pathogenesis of Cerebral White Matter Injury of Prematurity. Archives of Disease in Childhood-Fetal and Neonatal Edition, 93, F153-F161.
https://doi.org/10.1136/adc.2006.108837
[27]  Giussani, D.A. (2016) The Fetal Brain Sparing Response to Hypoxia: Physiological Mechanisms. The Journal of Physiology, 594, 1215-1230.
https://doi.org/10.1113/jp271099
[28]  Chugani, H.T. and Phelps, M.E. (1986) Maturational Changes in Cerebral Function in Infants Determined by 18FDG Positron Emission Tomography. Science, 231, 840-843.
https://doi.org/10.1126/science.3945811
[29]  Galluzzi, L., Blomgren, K. and Kroemer, G. (2009) Mitochondrial Membrane Permeabilization in Neuronal Injury. Nature Reviews Neuroscience, 10, 481-494.
https://doi.org/10.1038/nrn2665
[30]  Burd, I., Welling, J., Kannan, G. and Johnston, M.V. (2016) Excitotoxicity as a Common Mechanism for Fetal Neuronal Injury with Hypoxia and Intrauterine Inflammation. Advances in Pharmacology, 76, 85-101.
https://doi.org/10.1016/bs.apha.2016.02.003
[31]  Miller, S.P. and Ferriero, D.M. (2009) From Selective Vulnerability to Connectivity: Insights from Newborn Brain Imaging. Trends in Neurosciences, 32, 496-505.
https://doi.org/10.1016/j.tins.2009.05.010
[32]  Back, S.A. and Miller, S.P. (2014) Brain Injury in Premature Neonates: A Primary Cerebral Dysmaturation Disorder? Annals of Neurology, 75, 469-486.
https://doi.org/10.1002/ana.24132
[33]  van Tilborg, E., de Theije, C.G.M., van Hal, M., Wagenaar, N., de Vries, L.S., Benders, M.J., et al. (2017) Origin and Dynamics of Oligodendrocytes in the Developing Brain: Implications for Perinatal White Matter Injury. Glia, 66, 221-238.
https://doi.org/10.1002/glia.23256
[34]  Batalle, D., O'Muircheartaigh, J., Makropoulos, A., Kelly, C.J., Dimitrova, R., Hughes, E.J., et al. (2019) Different Patterns of Cortical Maturation before and after 38 Weeks Gestational Age Demonstrated by Diffusion MRI in Vivo. NeuroImage, 185, 764-775.
https://doi.org/10.1016/j.neuroimage.2018.05.046
[35]  Hagberg, H., Peebles, D. and Mallard, C. (2002) Models of White Matter Injury: Comparison of Infectious, Hypoxic‐ischemic, and Excitotoxic Insults. Mental Retardation and Developmental Disabilities Research Reviews, 8, 30-38.
https://doi.org/10.1002/mrdd.10007
[36]  Volpe, J.J., Kinney, H.C., Jensen, F.E. and Rosenberg, P.A. (2011) The Developing Oligodendrocyte: Key Cellular Target in Brain Injury in the Premature Infant. International Journal of Developmental Neuroscience, 29, 423-440.
https://doi.org/10.1016/j.ijdevneu.2011.02.012
[37]  Migale, R., Herbert, B.R., Lee, Y.S., Sykes, L., Waddington, S.N., Peebles, D., et al. (2015) Specific Lipopolysaccharide Serotypes Induce Differential Maternal and Neonatal Inflammatory Responses in a Murine Model of Preterm Labor. The American Journal of Pathology, 185, 2390-2401.
https://doi.org/10.1016/j.ajpath.2015.05.015
[38]  Elovitz, M.A., Brown, A.G., Breen, K., Anton, L., Maubert, M. and Burd, I. (2011) Intrauterine Inflammation, Insufficient to Induce Parturition, Still Evokes Fetal and Neonatal Brain Injury. International Journal of Developmental Neuroscience, 29, 663-671.
https://doi.org/10.1016/j.ijdevneu.2011.02.011
[39]  Paton, M.C.B., McDonald, C.A., Allison, B.J., Fahey, M.C., Jenkin, G. and Miller, S.L. (2017) Perinatal Brain Injury as a Consequence of Preterm Birth and Intrauterine Inflammation: Designing Targeted Stem Cell Therapies. Frontiers in Neuroscience, 11, Article 200.
https://doi.org/10.3389/fnins.2017.00200
[40]  Leviton, A., Allred, E.N., Kuban, K.C.K., Hecht, J.L., Onderdonk, A.B., O'Shea, T.M., et al. (2010) Microbiologic and Histologic Characteristics of the Extremely Preterm Infant's Placenta Predict White Matter Damage and Later Cerebral Palsy. The ELGAN Study. Pediatric Research, 67, 95-101.
https://doi.org/10.1203/pdr.0b013e3181bf5fab
[41]  Nadeau-Vallée, M., Chin, P., Belarbi, L., Brien, M., Pundir, S., Berryer, M.H., et al. (2017) Antenatal Suppression of IL-1 Protects against Inflammation-Induced Fetal Injury and Improves Neonatal and Developmental Outcomes in Mice. The Journal of Immunology, 198, 2047-2062.
https://doi.org/10.4049/jimmunol.1601600
[42]  Bell, M.J. and Hallenbeck, J.M. (2002) Effects of Intrauterine Inflammation on Developing Rat Brain. Journal of Neuroscience Research, 70, 570-579.
https://doi.org/10.1002/jnr.10423
[43]  Bell, M.J., Hallenbeck, J.M. and Gallo, V. (2004) Determining the Fetal Inflammatory Response in an Experimental Model of Intrauterine Inflammation in Rats. Pediatric Research, 56, 541-546.
https://doi.org/10.1203/01.pdr.0000139407.89883.6b
[44]  Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., et al. (2006) The Time of Prenatal Immune Challenge Determines the Specificity of Inflammation-Mediated Brain and Behavioral Pathology. The Journal of Neuroscience, 26, 4752-4762.
https://doi.org/10.1523/jneurosci.0099-06.2006
[45]  Burd, I., Balakrishnan, B. and Kannan, S. (2012) Models of Fetal Brain Injury, Intrauterine Inflammation, and Preterm Birth. American Journal of Reproductive Immunology, 67, 287-294.
https://doi.org/10.1111/j.1600-0897.2012.01110.x
[46]  Vogt, C., Hailer, N.P., Ghadban, C., Korf, H. and Dehghani, F. (2008) Successful Inhibition of Excitotoxic Neuronal Damage and Microglial Activation after Delayed Application of Interleukin‐1 Receptor Antagonist. Journal of Neuroscience Research, 86, 3314-3321.
https://doi.org/10.1002/jnr.21792
[47]  Dommergues, M., Plaisant, F., Verney, C. and Gressens, P. (2003) Early Microglial Activation Following Neonatal Excitotoxic Brain Damage in Mice: A Potential Target for Neuroprotection. Neuroscience, 121, 619-628.
https://doi.org/10.1016/s0306-4522(03)00558-x
[48]  Li, J., Baud, O., Vartanian, T., Volpe, J.J. and Rosenberg, P.A. (2005) Peroxynitrite Generated by Inducible Nitric Oxide Synthase and NADPH Oxidase Mediates Microglial Toxicity to Oligodendrocytes. Proceedings of the National Academy of Sciences of the United States of America, 102, 9936-9941.
https://doi.org/10.1073/pnas.0502552102
[49]  Vargas, D.L., Nascimbene, C., Krishnan, C., Zimmerman, A.W. and Pardo, C.A. (2004) Neuroglial Activation and Neuroinflammation in the Brain of Patients with Autism. Annals of Neurology, 57, 67-81.
https://doi.org/10.1002/ana.20315
[50]  Zerrate, M.C., Pletnikov, M., Connors, S.L., Vargas, D.L., Seidler, F.J., Zimmerman, A.W., et al. (2007) Neuroinflammation and Behavioral Abnormalities after Neonatal Terbutaline Treatment in Rats: Implications for Autism. Journal of Pharmacology and Experimental Therapeutics, 322, 16-22.
https://doi.org/10.1124/jpet.107.121483
[51]  Lyall, K., Croen, L., Daniels, J., Fallin, M.D., Ladd-Acosta, C., Lee, B.K., et al. (2017) The Changing Epidemiology of Autism Spectrum Disorders. Annual Review of Public Health, 38, 81-102.
https://doi.org/10.1146/annurev-publhealth-031816-044318
[52]  Dudley, D.J., Trautman, M.S. and Mitchell, M.D. (1993) Inflammatory Mediators Regulate Interleukin-8 Production by Cultured Gestational Tissues: Evidence for a Cytokine Network at the Chorio-Decidual Interface. The Journal of Clinical Endocrinology & Metabolism, 76, 404-410.
https://doi.org/10.1210/jcem.76.2.8432783
[53]  Kim, C.J., Yoon, B.H., Park, S., Kim, M.H. and Chi, J.G. (2001) Acute Funisitis of Preterm but Not Term Placentas Is Associated with Severe Fetal Inflammatory Response. Human Pathology, 32, 623-629.
https://doi.org/10.1053/hupa.2001.24992
[54]  Nussler, A.K., Wittel, U.A., Nussler, N.C. and Beger, H.G. (1999) Leukocytes, the Janus Cells in Inflammatory Disease. Langenbeck's Archives of Surgery, 384, 222-232.
https://doi.org/10.1007/s004230050196
[55]  Malaeb, S. and Dammann, O. (2009) Fetal Inflammatory Response and Brain Injury in the Preterm Newborn. Journal of Child Neurology, 24, 1119-1126.
https://doi.org/10.1177/0883073809338066
[56]  Anblagan, D., Pataky, R., Evans, M.J., Telford, E.J., Serag, A., Sparrow, S., et al. (2016) Association between Preterm Brain Injury and Exposure to Chorioamnionitis during Fetal Life. Scientific Reports, 6, Article No. 37932.
https://doi.org/10.1038/srep37932
[57]  Stoll, B.J., Hansen, N.I., Sánchez, P.J., Faix, R.G., Poindexter, B.B., Van Meurs, K.P. and Higgins, R.D. (2011) Early Onset Neonatal Sepsis: The Burden of Group B Streptococcal and E. coli Disease Continues. Pediatrics, 127, 817-826.
[58]  Jung, E., Romero, R., Yeo, L., Diaz-Primera, R., Marin-Concha, J., Para, R., et al. (2020) The Fetal Inflammatory Response Syndrome: The Origins of a Concept, Pathophysiology, Diagnosis, and Obstetrical Implications. Seminars in Fetal and Neonatal Medicine, 25, Article ID: 101146.
https://doi.org/10.1016/j.siny.2020.101146
[59]  Fanaroff, J.M. and Donn, S.M. (2020) Medico-Legal Implications of the Fetal Inflammatory Response Syndrome. Seminars in Fetal and Neonatal Medicine, 25, Article ID: 101127.
https://doi.org/10.1016/j.siny.2020.101127
[60]  Gilles, F.H. and Leviton, A. (2020) Neonatal White Matter Damage and the Fetal Inflammatory Response. Seminars in Fetal and Neonatal Medicine, 25, Article ID: 101111.
https://doi.org/10.1016/j.siny.2020.101111
[61]  Thinkhamrop, J., Hofmeyr, G.J., Adetoro, O., Lumbiganon, P. and Ota, E. (2015) Antibiotic Prophylaxis during the Second and Third Trimester to Reduce Adverse Pregnancy Outcomes and Morbidity. Cochrane Database of Systematic Reviews, No. 6, CD002250.
[62]  张蕾, 周小小, 余海芳. 头部亚低温对新生儿缺氧缺血时脑组织的氧化应激和炎症因子的影响[J]. 医学研究杂志, 2013, 42(5): 176-179.
[63]  Tian, S., Yang, H., Xiao, D., Huang, Y., He, G., Ma, H., et al. (2013) Mechanisms of Neuroprotection from Hypoxia-Ischemia (HI) Brain Injury by Up-Regulation of Cytoglobin (CYGB) in a Neonatal Rat Model. Journal of Biological Chemistry, 288, 15988-16003.
https://doi.org/10.1074/jbc.m112.428789
[64]  侯丽敏, 种玉飞, 陈红, 曾非, 尤春景. 高压氧对成年大鼠脑梗死后神经干细胞增殖及分化的影响[J]. 中华物理医学与康复杂志, 2013, 35(11): 839-842.
[65]  董文静, 张伟伟, 朱雅琴. 高压氧对新生儿脑损伤的早期综合康复治疗效果的影响[J]. 武警医学, 2019, 30(11): 945-947, 951.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133