|
基于肠眼轴理论下干眼的治疗综述
|
Abstract:
人体微生物群是指生活在人体不同部位的大量微生物(细菌、病毒和真菌),包括肠道、口腔、皮肤和眼睛。最近的研究强调了肠道微生物群(GM)与眼部健康之间的潜在关联。在这方面,一些证据支持肠眼轴的存在参与了干眼症的发病机制。目前,干眼的发病率日愈增高,严重影响了人们的生活及工作质量。既有的治疗及其护理方法对于严重干眼症患者并不能让其十分满意。因此,了解肠道微生物群与这些眼部疾病之间的联系可能有助于开发新的治疗方法,如益生菌、益生元、共生菌或粪便微生物群移植,通过这些方法可以调节肠道微生物群,从而达到令人满意的治疗效果。
Human microbiota refers to a large number of microorganisms (bacteria, viruses and fungi) living in different parts of the human body, including intestines, mouth, skin and eyes. Recent studies have emphasized the potential relationship between intestinal microflora (GM) and eye health. In this regard, some evidence supports that the existence of intestinal axis is involved in the pathogenesis of dry eye. At present, the incidence of dry eye is increasing day by day, which seriously affects people’s life and work quality. The existing treatment and nursing methods are not very satisfactory for patients with severe dry eye. Therefore, understanding the relationship between intestinal microflora and these eye diseases may be helpful to develop new treatment methods, such as probiotics, prebiotics, symbiotic bacteria or fecal microflora transplantation, through which intestinal microflora can be adjusted, so as to achieve satisfactory treatment results.
[1] | Tsubota, K., Pflugfelder, S.C., Liu, Z., Baudouin, C., Kim, H.M., Messmer, E.M., et al. (2020) Defining Dry Eye from a Clinical Perspective. International Journal of Molecular Sciences, 21, Article 9271. https://doi.org/10.3390/ijms21239271 |
[2] | Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C., et al. (2017) TFOS DEWS II Definition and Classification Report. The Ocular Surface, 15, 276-283. https://doi.org/10.1016/j.jtos.2017.05.008 |
[3] | Gipson, I.K. (2013) Age-related Changes and Diseases of the Ocular Surface and Cornea. Investigative Opthalmology & Visual Science, 54, ORSF48-ORSF53. https://doi.org/10.1167/iovs.13-12840 |
[4] | Jaiswal, S., Asper, L., Long, J., Lee, A., Harrison, K. and Golebiowski, B. (2019) Ocular and Visual Discomfort Associated with Smartphones, Tablets and Computers: What We Do and Do Not Know. Clinical and Experimental Optometry, 102, 463-477. https://doi.org/10.1111/cxo.12851 |
[5] | Vrancken, G., Gregory, A.C., Huys, G.R.B., Faust, K. and Raes, J. (2019) Synthetic Ecology of the Human Gut Microbiota. Nature Reviews Microbiology, 17, 754-763. https://doi.org/10.1038/s41579-019-0264-8 |
[6] | Hou, K., Wu, Z., Chen, X., Wang, J., Zhang, D., Xiao, C., et al. (2022) Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 135. https://doi.org/10.1038/s41392-022-00974-4 |
[7] | Aragona, P., Baudouin, C., Benitez del Castillo, J.M., Messmer, E., Barabino, S., Merayo-Lloves, J., et al. (2021) The Ocular Microbiome and Microbiota and Their Effects on Ocular Surface Pathophysiology and Disorders. Survey of Ophthalmology, 66, 907-925. https://doi.org/10.1016/j.survophthal.2021.03.010 |
[8] | Graham, J.E., Moore, J.E., Jiru, X., Moore, J.E., Goodall, E.A., Dooley, J.S.G., et al. (2007) Ocular Pathogen or Commensal: A PCR-Based Study of Surface Bacterial Flora in Normal and Dry Eyes. Investigative Opthalmology & Visual Science, 48, 5616-5623. https://doi.org/10.1167/iovs.07-0588 |
[9] | Dong, Q., Brulc, J.M., Iovieno, A., Bates, B., Garoutte, A., Miller, D., et al. (2011) Diversity of Bacteria at Healthy Human Conjunctiva. Investigative Opthalmology & Visual Science, 52, 5408-5412. https://doi.org/10.1167/iovs.10-6939 |
[10] | Zhou, Y., Holland, M.J., Makalo, P., Joof, H., Roberts, C.H., Mabey, D.C., et al. (2014) The Conjunctival Microbiome in Health and Trachomatous Disease: A Case Control Study. Genome Medicine, 6, Article No. 99. https://doi.org/10.1186/s13073-014-0099-x |
[11] | Doan, T., Akileswaran, L., Andersen, D., Johnson, B., Ko, N., Shrestha, A., et al. (2016) Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva. Investigative Opthalmology & Visual Science, 57, 5116-5126. https://doi.org/10.1167/iovs.16-19803 |
[12] | Li, Z., Gong, Y., Chen, S., Li, S., Zhang, Y., Zhong, H., et al. (2019) Comparative Portrayal of Ocular Surface Microbe with and without Dry Eye. Journal of Microbiology, 57, 1025-1032. https://doi.org/10.1007/s12275-019-9127-2 |
[13] | Ozkan, J., Nielsen, S., Diez-Vives, C., Coroneo, M., Thomas, T. and Willcox, M. (2017) Temporal Stability and Composition of the Ocular Surface Microbiome. Scientific Reports, 7, Article No. 9880. https://doi.org/10.1038/s41598-017-10494-9 |
[14] | Baim, A.D., Movahedan, A., Farooq, A.V. and Skondra, D. (2018) The Microbiome and Ophthalmic Disease. Experimental Biology and Medicine, 244, 419-429. https://doi.org/10.1177/1535370218813616 |
[15] | Kugadas, A., Wright, Q., Geddes-McAlister, J. and Gadjeva, M. (2017) Role of Microbiota in Strengthening Ocular Mucosal Barrier Function through Secretory IGA. Investigative Opthalmology & Visual Science, 58, 4593-4600. https://doi.org/10.1167/iovs.17-22119 |
[16] | Sheppard, J., Lee, B.S. and Periman, L.M. (2023) Dry Eye Disease: Identification and Therapeutic Strategies for Primary Care Clinicians and Clinical Specialists. Annals of Medicine, 55, 241-252. |
[17] | Marsh, P. and Pflugfelder, S.C. (1999) Topical Nonpreserved Methylprednisolone Therapy for Keratoconjunctivitis Sicca in Sjögren Syndrome. Ophthalmology, 106, 811-816. https://doi.org/10.1016/s0161-6420(99)90171-9 |
[18] | Wang, C., Zaheer, M., Bian, F., Quach, D., Swennes, A., Britton, R., et al. (2018) Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. International Journal of Molecular Sciences, 19, Article 565. https://doi.org/10.3390/ijms19020565 |
[19] | Zaheer, M., Wang, C., Bian, F., Yu, Z., Hernandez, H., de Souza, R.G., et al. (2018) Protective Role of Commensal Bacteria in Sjögren Syndrome. Journal of Autoimmunity, 93, 45-56. https://doi.org/10.1016/j.jaut.2018.06.004 |
[20] | Wang, C., Schaefer, L., Bian, F., Yu, Z., Pflugfelder, S.C., Britton, R.A., et al. (2019) Dysbiosis Modulates Ocular Surface Inflammatory Response to Liposaccharide. Investigative Opthalmology & Visual Science, 60, 4224-4233. https://doi.org/10.1167/iovs.19-27939 |
[21] | Liu, J., Wu, M., He, J., Xiao, C., Xue, Y., Fu, T., et al. (2018) Antibiotic-induced Dysbiosis of Gut Microbiota Impairs Corneal Nerve Regeneration by Affecting CCR2-Negative Macrophage Distribution. The American Journal of Pathology, 188, 2786-2799. https://doi.org/10.1016/j.ajpath.2018.08.009 |
[22] | de Paiva, C.S., Jones, D.B., Stern, M.E., Bian, F., Moore, Q.L., Corbiere, S., et al. (2016) Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Scientific Reports, 6, Article No. 23561. https://doi.org/10.1038/srep23561 |
[23] | Floyd, J.L. and Grant, M.B. (2020) The Gut–eye Axis: Lessons Learned from Murine Models. Ophthalmology and Therapy, 9, 499-513. https://doi.org/10.1007/s40123-020-00278-2 |
[24] | Arboleya, S., Watkins, C., Stanton, C. and Ross, R.P. (2016) Gut Bifidobacteria Populations in Human Health and Aging. Frontiers in Microbiology, 7, Article 1204. https://doi.org/10.3389/fmicb.2016.01204 |
[25] | Devi, T.B., Devadas, K., George, M., Gandhimathi, A., Chouhan, D., Retnakumar, R.J., et al. (2021) Low Bifidobacterium Abundance in the Lower Gut Microbiota Is Associated with Helicobacter Pylori-Related Gastric Ulcer and Gastric Cancer. Frontiers in Microbiology, 12, Article 631140. https://doi.org/10.3389/fmicb.2021.631140 |
[26] | Heeney, D.D., Gareau, M.G. and Marco, M.L. (2018) Intestinal Lactobacillus in Health and Disease, a Driver or Just along for the Ride? Current Opinion in Biotechnology, 49, 140-147. https://doi.org/10.1016/j.copbio.2017.08.004 |
[27] | Wang, W., Chen, L., Zhou, R., Wang, X., Song, L., Huang, S., et al. (2014) Increased Proportions of Bifidobacterium and the Lactobacillus Group and Loss of Butyrate-Producing Bacteria in Inflammatory Bowel Disease. Journal of Clinical Microbiology, 52, 398-406. https://doi.org/10.1128/jcm.01500-13 |
[28] | Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C. and Gil, A. (2012) Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61, 160-174. https://doi.org/10.1159/000342079 |
[29] | Liu, Y., Wang, J. and Wu, C. (2022) Modulation of Gut Microbiota and Immune System by Probiotics, Pre-Biotics, and Post-Biotics. Frontiers in Nutrition, 8, Article 634894. https://doi.org/10.3389/fnut.2021.634897 |
[30] | Nagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., et al. (2018) Human-Origin Probiotic Cocktail Increases Short-Chain Fatty Acid Production via Modulation of Mice and Human Gut Microbiome. Scientific Reports, 8, Article No. 12649. https://doi.org/10.1038/s41598-018-30114-4 |
[31] | Thomas, C.M. and Versalovic, J. (2010) Probiotics-Host Communication: Modulation of Signaling Pathways in the Intestine. Gut Microbes, 1, 148-163. https://doi.org/10.4161/gmic.1.3.11712 |
[32] | Aghamohammad, S., Sepehr, A., Miri, S.T., Najafi, S., Rohani, M. and Pourshafiea, M.R. (2022) The Effects of the Probiotic Cocktail on Modulation of the NF-κB and JAK/STAT Signaling Pathways Involved in the Inflammatory Response in Bowel Disease Model. BMC Immunology, 23, Article No. 8. https://doi.org/10.1186/s12865-022-00484-6 |
[33] | Clemente, J.C., Manasson, J. and Scher, J.U. (2018) The Role of the Gut Microbiome in Systemic Inflammatory Disease. BMJ, 360, j5145. https://doi.org/10.1136/bmj.j5145 |
[34] | Mendez, R., Watane, A., Farhangi, M., Cavuoto, K.M., Leith, T., Budree, S., et al. (2020) Gut Microbial Dysbiosis in Individuals with Sjögren’s Syndrome. Microbial Cell Factories, 19, Article No. 90. https://doi.org/10.1186/s12934-020-01348-7 |
[35] | Mazziotta, C., Tognon, M., Martini, F., Torreggiani, E. and Rotondo, J.C. (2023) Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells, 12, Article 184. https://doi.org/10.3390/cells12010184 |
[36] | Yan, F. and Polk, D.B. (2011) Probiotics and Immune Health. Current Opinion in Gastroenterology, 27, 496-501. https://doi.org/10.1097/mog.0b013e32834baa4d |
[37] | Fedorak, R.N. (2010) Probiotics in the Management of Ulcerative Colitis. Gastroenterology & Hepatology, 6, 688-690. |
[38] | Li, B., Liang, L., Deng, H., Guo, J., Shu, H. and Zhang, L. (2020) Efficacy and Safety of Probiotics in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 11, Article 332. https://doi.org/10.3389/fphar.2020.00332 |
[39] | Liu, Y., Alookaran, J.J. and Rhoads, J.M. (2018) Probiotics in Autoimmune and Inflammatory Disorders. Nutrients, 10, Article 1537. https://doi.org/10.3390/nu10101537 |
[40] | Śliżewska, K., Markowiak-Kopeć, P. and Śliżewska, W. (2020) The Role of Probiotics in Cancer Prevention. Cancers, 13, Article 20. https://doi.org/10.3390/cancers13010020 |
[41] | Wallace, C.J.K. and Milev, R. (2017) The Effects of Probiotics on Depressive Symptoms in Humans: A Systematic Review. Annals of General Psychiatry, 16, Article No. 14. https://doi.org/10.1186/s12991-017-0138-2 |
[42] | Bai, X., Xu, Q., Zhang, W. and Wang, C. (2022) The Gut-Eye Axis: Correlation between the Gut Microbiota and Autoimmune Dry Eye in Individuals with Sjögren Syndrome. Eye & Contact Lens: Science & Clinical Practice, 49, 1-7. https://doi.org/10.1097/icl.0000000000000953 |
[43] | Choi, S.H., Oh, J.W., Ryu, J.S., Kim, H.M., Im, S., Kim, K.P., et al. (2020) IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model. Investigative Opthalmology & Visual Science, 61, 42. https://doi.org/10.1167/iovs.61.3.42 |
[44] | Kim, J., Choi, S., Kim, Y., Jeong, H., Ryu, J., Lee, H., et al. (2017) Clinical Effect of IRT-5 Probiotics on Immune Modulation of Autoimmunity or Alloimmunity in the Eye. Nutrients, 9, Article 1166. https://doi.org/10.3390/nu9111166 |
[45] | Moon, J., Ryu, J.S., Kim, J.Y., Im, S. and Kim, M.K. (2020) Effect of IRT5 Probiotics on Dry Eye in the Experimental Dry Eye Mouse Model. PLOS ONE, 15, e0243176. https://doi.org/10.1371/journal.pone.0243176 |
[46] | Yun, S., Son, Y., Lee, D., Shin, Y., Han, M.J. and Kim, D. (2021) Lactobacillus plantarum and Bifidobacterium bifidum Alleviate Dry Eye in Mice with Exorbital Lacrimal Gland Excision by Modulating Gut Inflammation and Microbiota. Food & Function, 12, 2489-2497. https://doi.org/10.1039/d0fo02984j |
[47] | Russell, M.W., Muste, J.C., Kuo, B.L., Wu, A.K. and Singh, R.P. (2023) Clinical Trials Targeting the Gut-Microbiome to Effect Ocular Health: A Systematic Review. Eye, 37, 2877-2885. https://doi.org/10.1038/s41433-023-02462-7 |
[48] | Chisari, G., Chisari, E.M., Borzi, A.M. and Chisari, C.G. (2018) Aging Eye Microbiota in Dry Eye Syndrome in Patients Treated with Enterococcus Faecium and Saccharomyces boulardii. Current Clinical Pharmacology, 12, 99-105. https://doi.org/10.2174/1574884712666170704145046 |
[49] | Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., et al. (2017) Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491-502. https://doi.org/10.1038/nrgastro.2017.75 |
[50] | Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S., et al. (2019) Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 8, Article 92. https://doi.org/10.3390/foods8030092 |
[51] | Vivero-Lopez, M., Pereira-da-Mota, A.F., Carracedo, G., Huete-Toral, F., Parga, A., Otero, A., et al. (2022) Phosphorylcholine-based Contact Lenses for Sustained Release of Resveratrol: Design, Antioxidant and Antimicrobial Performances, and in Vivo Behavior. ACS Applied Materials & Interfaces, 14, 55431-55446. https://doi.org/10.1021/acsami.2c18217 |
[52] | Huang, G., Su, L., Zhang, N., Han, R., Leong, W.K., Li, X., et al. (2022) The Prebiotic and Anti-Fatigue Effects of Hyaluronan. Frontiers in Nutrition, 9, Article 977556. https://doi.org/10.3389/fnut.2022.977556 |
[53] | Rastmanesh, R. (2021) Aquaporin5-targeted Treatment for Dry Eye through Bioactive Compounds and Gut Microbiota. Journal of Ocular Pharmacology and Therapeutics, 37, 464-471. https://doi.org/10.1089/jop.2021.0029 |
[54] | Ren, Y., Lu, H., Reinach, P.S., Zheng, Q., Li, J., Tan, Q., et al. (2017) Hyperosmolarity-Induced AQP5 Upregulation Promotes Inflammation and Cell Death via JNK1/2 Activation in Human Corneal Epithelial Cells. Scientific Reports, 7, Article No. 4727. https://doi.org/10.1038/s41598-017-05145-y |
[55] | Tavakoli, A., Markoulli, M., Papas, E. and Flanagan, J. (2022) The Impact of Probiotics and Prebiotics on Dry Eye Disease Signs and Symptoms. Journal of Clinical Medicine, 11, Article 4889. https://doi.org/10.3390/jcm11164889 |
[56] | Chisari, G., Chisari, E.M. and Francaviglia, A. (2017) The Mixture of Bifidobacterium Associated with Fructo-Oligosaccharides Reduces the Damage of the Ocular Surface. Clinical Therapeutics, 168, 181-185. |
[57] | Erdem, B., Kaya, Y., Kıran, T.R. and Yılmaz, S. (2023) An Association between the Intestinal Permeability Biomarker Zonulin and the Development of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Turkish Journal of Ophthalmology, 53, 91-96. https://doi.org/10.4274/tjo.galenos.2022.70375 |
[58] | Gupta, A. and Khanna, S. (2017) Fecal Microbiota Transplantation. JAMA, 318, 102. https://doi.org/10.1001/jama.2017.6466 |
[59] | Ramai, D. (2018) Fecal Microbiota Transplantation: Donor Relation, Fresh or Frozen, Delivery Methods, Cost-effectiveness. Annals of Gastroenterology, 31, 1-9. https://doi.org/10.20524/aog.2018.0328 |
[60] | Wei, Y., Gong, J., Zhu, W., Guo, D., Gu, L., Li, N., et al. (2015) Fecal Microbiota Transplantation Restores Dysbiosis in Patients with Methicillin Resistant Staphylococcus Aureus Enterocolitis. BMC Infectious Diseases, 15, Article No. 265. https://doi.org/10.1186/s12879-015-0973-1 |
[61] | Xiao, W., Su, J., Gao, X., Yang, H., Weng, R., Ni, W., et al. (2022) The Microbiota-Gut-Brain Axis Participates in Chronic Cerebral Hypoperfusion by Disrupting the Metabolism of Short-Chain Fatty Acids. Microbiome, 10, Article No. 62. https://doi.org/10.1186/s40168-022-01255-6 |
[62] | Zhao, Z., Ning, J., Bao, X., Shang, M., Ma, J., Li, G., et al. (2021) Fecal Microbiota Transplantation Protects Rotenone-Induced Parkinson’s Disease Mice via Suppressing Inflammation Mediated by the Lipopolysaccharide-TLR4 Signaling Pathway through the Microbiota-Gut-Brain Axis. Microbiome, 9, Article No. 226. https://doi.org/10.1186/s40168-021-01107-9 |
[63] | Hardianti Gunardi, T., Paramita Susantono, D., Arus Victor, A. and Sitompul, R. (2021) Atopobiosis and Dysbiosis in Ocular Diseases: Is Fecal Microbiota Transplant and Probiotics a Promising Solution? Journal of Ophthalmic and Vision Research, 16, 631-643. https://doi.org/10.18502/jovr.v16i4.9754 |
[64] | Choi, R.Y., Asquith, M. and Rosenbaum, J.T. (2018) Fecal Transplants in Spondyloarthritis and Uveitis: Ready for a Clinical Trial? Current Opinion in Rheumatology, 30, 303-309. https://doi.org/10.1097/bor.0000000000000506 |
[65] | Watane, A., Cavuoto, K.M., Rojas, M., Dermer, H., Day, J.O., Banerjee, S., et al. (2022) Fecal Microbial Transplant in Individuals with Immune-Mediated Dry Eye. American Journal of Ophthalmology, 233, 90-100. https://doi.org/10.1016/j.ajo.2021.06.022 |