全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

紧密栅结构对氦氙混合气体流动换热的影响研究
Study on the Influence of Compact Rod Bundle Structure on the Flow and Heat Transfer of Helium-Xenon Gas Mixture

DOI: 10.12677/nst.2024.124032, PP. 323-332

Keywords: 气冷空间堆,He-Xe混合气体,紧密栅,流动传热特性
Gas-Cooled Space Reactor
, He-Xe Gas Mixture, Compact Rod Bundle, Flow and Heat Transfer Characteristic

Full-Text   Cite this paper   Add to My Lib

Abstract:

以氦氙(He-Xe)混合气体为冷却剂的布雷顿循环气冷堆被视为兆瓦级空间能源系统中最合理的技术之一。紧密栅具有功率密度高、质量小、结构紧凑等优点,非常适用于气冷空间堆堆芯结构。本研究对He-Xe气体混合物在紧密栅棒束通道内的流动传热进行了CFD数值模拟,得到了紧密栅通道中的速度和温度场分布;比较了不同栅径比条件下He-Xe混合气体在紧密栅棒束通道内的流动换热性能参数。结果表明,随着栅径比的增加,紧密栅棒束通道的局部努塞尔数和摩擦阻力系数均为先增加后减少,其中栅径比为1.25时的总努塞尔数最大;综合换热性能的评价标准随着栅径比的变化先增加后减小,在5种栅径比中P/D = 1.15最佳。
The Brayton cycle gas-cooled reactor with helium-xenon (He-Xe) gas mixture as coolant is regarded as one of the most reasonable technologies for megawatt-scale space energy systems. Compact rod bundle has the advantages of high-power density, low mass and compact structure, which is very suitable for gas-cooled space core structure. In this study, the CFD numerical simulation of the flow and heat transfer of He-Xe gas mixture in compact rod bundle channel was carried out, and the velocity and temperature field distributions in the compact rod bundle were obtained. The flow and heat transfer performance parameters of He-Xe mixed gas in rod bundle channels were compared under different pitch-diameter ratios. The results show that with the increase in pitch-diameter ratio, the local Nusselt number and frictional factor of compact rod bundle channels increase first and then decrease, and the total Nusselt number is the largest when the pitch-diameter ratio is 1.25. The evaluation criterion of comprehensive heat transfer performance increases first and then decreases with the change in pitch-diameter ratio, and P/D = 1.15 is the best among the five grid-diameter ratios.

References

[1]  Qin, H., Zhang, R., Guo, K., Wang, C., Tian, W., Su, G., et al. (2020) Thermal‐Hydraulic Analysis of an Open‐Grid Megawatt Gas‐Cooled Space Nuclear Reactor Core. International Journal of Energy Research, 45, 11616-11628.
https://doi.org/10.1002/er.5329
[2]  Zhang, R., Guo, K., Wang, C., Zhang, D., Tian, W., Qiu, S., et al. (2020) Thermal‐hydraulic Analysis of Gas‐Cooled Space Nuclear Reactor Power System with Closed Brayton Cycle. International Journal of Energy Research, 45, 11851-11867.
https://doi.org/10.1002/er.5813
[3]  Meng, T., Cheng, K., Zeng, C., He, Y. and Tan, S. (2019) Preliminary Control Strategies of Megawatt-Class Gas-Cooled Space Nuclear Reactor with Different Control Rod Configurations. Progress in Nuclear Energy, 113, 135-144.
https://doi.org/10.1016/j.pnucene.2019.01.013
[4]  Ning, K., He, Y., Huang, D., Wang, X., Yang, W., Zhao, F., et al. (2022) Modelling Research on the Control Scheme and Control Characteristic of a Small Gas-Cooled Reactor. Progress in Nuclear Energy, 147, Article ID: 104189.
https://doi.org/10.1016/j.pnucene.2022.104189
[5]  Taylor, M.F., Bauer, K.E. and McEligot, D.M. (1988) Internal Forced Convection to Low-Prandtl-Number Gas Mixtures. International Journal of Heat and Mass Transfer, 31, 13-25.
https://doi.org/10.1016/0017-9310(88)90218-9
[6]  Nakoryakov, V.E. and Vitovsky, O.V. (2017) Study of Heat Transfer of a Helium–xenon Mixture in Heated Channels with Different Cross-Sectional Shapes. Journal of Applied Mechanics and Technical Physics, 58, 664-669.
https://doi.org/10.1134/s0021894417040101
[7]  Vitovsky, O.V., Elistratov, S.L., Makarov, M.S., Nakoryakov, V.E. and Naumkin, V.S. (2016) Heat Transfer in a Flow of Gas Mixture with Low Prandtl Number in Triangular Channels. Journal of Engineering Thermophysics, 25, 15-23.
https://doi.org/10.1134/s1810232816010021
[8]  Kirov, V.S., Kozhelupenko, Y.D. and Tetel’baum, S.D. (1974) Determination of Heat-Transfer Coefficient for Gas Mixtures Containing Helium and Hydrogen. Journal of Engineering Physics, 26, 152-154.
https://doi.org/10.1007/bf00825208
[9]  Elistratov, S.L., Vitovskii, O.V. and Slesareva, E.Y. (2015) Experimental Investigation of Heat Transfer of Helium-Xenon Mixtures in Cylindrical Channels. Journal of Engineering Thermophysics, 24, 33-35.
https://doi.org/10.1134/s181023281501004x
[10]  Qin, H., Wang, C., Tian, W., Qiu, S. and Su, G. (2022) Experimental Investigation on Flow and Heat Transfer Characteristics of He-Xe Gas Mixture. International Journal of Heat and Mass Transfer, 192, Article ID: 122942.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122942
[11]  Vitovsky, O.V. (2022) Experimental Study of Heat Transfer during the Flow of a Gas Coolant in a Heated Quasi-Triangular Channel. International Journal of Heat and Mass Transfer, 190, Article ID: 122771.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122771
[12]  Zhou, B., Ji, Y., Sun, J. and Sun, Y. (2021) Nusselt Number Correlation for Turbulent Heat Transfer of Helium-Xenon Gas Mixtures. Nuclear Science and Techniques, 32, Article No. 128.
https://doi.org/10.1007/s41365-021-00972-1
[13]  Ning, K., He, Y., Zhao, F., Dong, X., Gui, M., Sun, R., et al. (2023) Numerical Investigation on Flow and Heat Transfer Characteristics of Helium-Xenon Gas Mixture in Rod Bundles. Progress in Nuclear Energy, 166, Article ID: 104947.
https://doi.org/10.1016/j.pnucene.2023.104947
[14]  Qin, H., Fang, Y., Wang, C., Tian, W., Qiu, S., Su, G., et al. (2020) Numerical Investigation on Heat Transfer Characteristics of Helium‐Xenon Gas Mixture. International Journal of Energy Research, 45, 11745-11758.
https://doi.org/10.1002/er.5692
[15]  Zhou, B., Ji, Y., Sun, J. and Sun, Y. (2020) Modified Turbulent Prandtl Number Model for Helium-Xenon Gas Mixture with Low Prandtl Number. Nuclear Engineering and Design, 366, Article ID: 110738.
https://doi.org/10.1016/j.nucengdes.2020.110738
[16]  Tournier, J.P. and El-Genk, M.S. (2008) Properties of Noble Gases and Binary Mixtures for Closed Brayton Cycle Applications. Energy Conversion and Management, 49, 469-492.
https://doi.org/10.1016/j.enconman.2007.06.050

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133