全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长江流域河流CO2分压的控制因素识别与空间模拟
Identification of Controlling Factors and Spatial Modeling of Riverine CO2 Partial Pressure in the Yangtze River Basin

DOI: 10.12677/jwrr.2024.135053, PP. 465-474

Keywords: 河流碳循环,二氧化碳分压,随机森林,长江流域
Riverine Carbon Cycle
, The Partial Pressure of CO2, Random Forest, Yangtze River Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

河流的二氧化碳(CO2)排放是全球碳循环的重要组成部分。然而,各种不同的环境因子将以某种复杂的方式影响着河流的CO2排放,长江流域河流二氧化碳分压(pCO2)的主要控制因子尚不明确。本文计算了长江流域河流的pCO2并通过随机森林方法对长江流域的pCO2进行建模,识别出了与人为活动相关的因素(国民生产总值,区域人口密度,城镇和耕地覆盖率)在长江流域pCO2空间变化中发挥着重要作用。最后,使用训练好的随机森林模型模拟了0.05? × 0.05?的空间范围下长江流域年尺度的河流pCO2空间分布,结果表明长江流域河流pCO2从上游至下游呈增加趋势,同时在2010~2018这一研究期间,河流pCO2呈下降趋势。我们认为高强度的人类活动在改变陆地碳循环的同时,也会改变河流碳循环,这将是未来实现“碳中和”目标的一个重要考虑因素。
The emission of carbon dioxide (CO2) from rivers is a critical component of the global carbon cycle. However, the environmental factors influencing riverine CO2 emissions interact in complex ways, and the key drivers of partial pressure of CO2 (pCO2) in rivers across the Yangtze River Basin remain unclear. This paper calculated riverine pCO2 in the Yangtze River Basin and modeled it using a Random Forest method. The analysis revealed that anthropogenic factors, such as gross domestic product, population density, and urban and cropland coverage, significantly contribute to the spatial variability of pCO2. Applying the trained random forest model to simulate the annual spatial distribution of riverine pCO2 at a 0.05? × 0.05? grid resolution across the basin, the results indicate an increasing trend in riverine pCO2 from upstream to downstream, while pCO2 exhibited a declining trend during the 2010~2018 study period. It concludes that intensive human activities, while altering the terrestrial carbon cycle, also modify the riverine carbon cycle, which will be a critical consideration for achieving future “carbon neutrality” goals.

References

[1]  RAYMOND, P. A., HARTMANN, J., LAUERWALD, R., et al. Global carbon dioxide emissions from inland waters. Nature, 2013, 503(7476): 355-359.
https://doi.org/10.1038/nature12760
[2]  TRANVIK, L. J., COLE, J. J. and PRAIRIE, Y. T. The study of carbon in inland waters—From isolated ecosystems to players in the global carbon cycle. Limnology and Oceanography Letters, 2018, 3(3): 41-48.
https://doi.org/10.1002/lol2.10068
[3]  LIU, S., KUHN, C., AMATULLI, G., et al. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proceedings of the National Academy of Sciences, 2022, 119(11): e2106322119.
https://doi.org/10.1073/pnas.2106322119
[4]  SOUMIS, N., CANUEL, R. and LUCOTTE, M. Evaluation of two current approaches for the measurement of carbon dioxide diffusive fluxes from lentic ecosystems. Environmental Science & Technology, 2008, 42(8): 2964-2969.
https://doi.org/10.1021/es702361s
[5]  SANDER, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 2015, 15(8): 4399-4981.
https://doi.org/10.5194/acp-15-4399-2015
[6]  ABRIL, G., BOUILLON, S., DARCHAMBEAU, F., et al. Technical note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 2015, 12(1): 67-78.
https://doi.org/10.5194/bg-12-67-2015
[7]  LE, T. P. Q., MARCHAND, C., HO, C. T., et al. CO2 partial pressure and CO2 emission along the lower Red River (Vietnam). Biogeosciences, 2018, 15(15): 4799-4814.
https://doi.org/10.5194/bg-15-4799-2018
[8]  BORGES, A. V., DARCHAMBEAU, F., LAMBERT, T., et al. Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Science of the Total Environment, 2018, 610-611: 342-355.
https://doi.org/10.1016/j.scitotenv.2017.08.047
[9]  DAS NEVES LOPES, M., DECARLI, C. J., PINHEIRO-SILVA, L., et al. Urbanization increases carbon concentration and pCO2 in subtropical streams. Environmental Science and Pollution Research, 2020, 27(15): 18371-18381.
https://doi.org/10.1007/s11356-020-08175-8
[10]  LEHNER, B., GRILL, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrological Processes, 2013, 27(15): 2171-2186.
https://doi.org/10.1002/hyp.9740
[11]  YAO, G., GAO, Q., WANG, Z., et al. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Science of the Total Environment, 2007, 376(1-3): 255-266.
https://doi.org/10.1016/j.scitotenv.2007.01.080
[12]  韩广轩, 周广胜. 土壤呼吸作用时空动态变化及其影响机制研究与展望[J]. 植物生态学报, 2009, 33(1): 197-205.
[13]  ZHANG, T., LI, J., PU, J., et al. Carbon dioxide exchanges and their controlling factors in Guijiang River, SW China. Journal of Hydrology, 2019, 578: 124073.
https://doi.org/10.1016/j.jhydrol.2019.124073
[14]  顾世杰, 李思悦. 低等级河流CO2分压的时空变化及驱动因素——以汉江流域月河为例[J]. 湖泊科学, 2023, 35(1): 349-358.
[15]  TANG, W., XU, Y. J., NI, M., et al. Land use and hydrological factors control concentrations and diffusive fluxes of riverine dissolved carbon dioxide and methane in low-order streams. Water Research, 2023, 231: 119615.
https://doi.org/10.1016/j.watres.2023.119615
[16]  LAUERWALD, R., LARUELLE, G. G., HARTMANN, J., et al. Spatial patterns in CO2 evasion from the global river network. Global Biogeochemical Cycles, 2015, 29(5): 534-554.
https://doi.org/10.1002/2014GB004941
[17]  WANG, Y., FAN, D., LIU, J. T., et al. Clay-mineral compositions of sediments in the Gaoping River-Sea system: Implications for weathering, sedimentary routing and carbon cycling. Chemical Geology, 2016, 447: 11-26.
https://doi.org/10.1016/j.chemgeo.2016.10.024
[18]  BATTIN, T. J., LAUERWALD, R., BERNHARDT, E. S., et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 2023, 613(7944): 449-459.
https://doi.org/10.1038/s41586-022-05500-8
[19]  WANG, J., ZHOU, Y., ZHOU, L., et al. Urbanization in developing countries overrides catchment productivity in fueling inland water CO2 emissions. Global Change Biology, 2023, 29(1): 4.
https://doi.org/10.1111/gcb.16475
[20]  XIAO, Q., DUAN, H., QI, T., et al. Environmental investments decreased partial pressure of CO2 in a small eutrophic urban lake: Evidence from long-term measurements. Environmental Pollution, 2020, 263: 10.
https://doi.org/10.1016/j.envpol.2020.114433
[21]  LUO, J., LI, S., NI, M., et al. Large spatiotemporal shifts of CO2 partial pressure and CO2 degassing in a monsoonal headwater stream. Journal of Hydrology, 2019, 579: 124135.
https://doi.org/10.1016/j.jhydrol.2019.124135
[22]  RAN, L., BUTMAN, D. E., BATTIN, T. J., et al. Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nature Communications, 2021, 12(1): 1-9.
https://doi.org/10.1038/s41467-021-21926-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133