The increase of the critical temperature Tc for superconductivity in Al1?x(SiO2)x cermets with increasing x correlates with a decrease of the electron density n due to electron transfer, expressed by
(*). Behind the formula (*) and
, which is characteristic of hole-doped cuprat high-temperature superconductors, lies a general phenomenon, namely electron transfer, which equalizes potential differences in the material and leads to a strong reduction of n. P is the fraction of holes filled by the transferred electrons. A quantitative consideration gives
(**), where x is the doping concentration and x0 is the concentration at which superconductivity begins. At
References
[1]
Bednorz, J.G. and Müller, K.A. (1986) Possible Hight C Superconductivity in the Ba-La-Cu-O System. Zeitschrift fürPhysikBCondensedMatter, 64, 189-193. https://doi.org/10.1007/bf01303701
[2]
Tallon, J.L., Bernhard, C., Shaked, H., Hitterman, R.L. and Jorgensen, J.D. (1995) Generic Superconducting Phase Behavior in High- Cuprates: Variation with Hole Concentration in YBa2Cu3O7−δ. Physical Review B, 51, Article ID: 12911.
[3]
Wang, Z., Zou, C., Lin, C., Luo, X., Yan, H., Yin, C., et al. (2023) Correlating the Charge-Transfer Gap to the Maximum Transition Temperature in Bi2Sr2Can-1CunO2n+4+δ. Science, 381, 227-231. https://doi.org/10.1126/science.add3672
[4]
Sonntag, J. (1989) Disordered Electronic Systems: Concentration Dependence of the Dc Conductivity in Amorphous Transition-Metal–Metalloid Alloys (Metallic Regime). PhysicalReviewB, 40, 3661-3671. https://doi.org/10.1103/physrevb.40.3661
[5]
Sonntag, J. (2023) The Influence of Phase Separation on Structure and Electronic Transport in Solid-State Physics. Cambridge Scholars Publishing. https://www.cambridgescholars.com/product/978-1-4438-5723-9
[6]
Taillefer, L. (2009) Fermi Surface Reconstruction in High-Tc Superconductors. JournalofPhysics: CondensedMatter, 21, Article ID: 164212. https://doi.org/10.1088/0953-8984/21/16/164212
[7]
Buttler, T. (2009) Herstellung, Charakterisierung und Untersuchung hoch-geordneter Y-123 Einkristalle. Diplomarbeit Thesis, Technical University Munich.
[8]
Liang, R., Bonn, D.A. and Hardy, W.N. (2006) Evaluation of CuO2 Plane Hole Doping in YBa2Cu3O6+ Single Crystals. Physical Review B, 73, Article ID: 180505.
[9]
LeBoeuf, D., Doiron-Leyraud, N., Levallois, J., Daou, R., Bonnemaison, J., Hussey, N.E., et al. (2007) Electron Pockets in the Fermi Surface of Hole-Doped High-Tc Superconductors. Nature, 450, 533-536. https://doi.org/10.1038/nature06332
[10]
Buckel, W. and Kleiner, R. (2004) Supraleitung—Grundlagen und Anwendung. 6th Edition, Wiley-VCH Verlag GmbH und Co. KGaA.
[11]
Keller, H., Bussmann-Holder, A. and Müller, K.A. (2008) Jahn-Teller Physics and High-Tc Superconductivity. MaterialsToday, 11, 38-46. https://doi.org/10.1016/s1369-7021(08)70178-0
[12]
Kirejew, P.S. (1974) Physik der Halbleiter. Akademie-Verlag.
[13]
Kartsovnik, M.V., Helm, T., Putzke, C., Wolff-Fabris, F., Sheikin, I., Lepault, S., et al. (2011) Fermi Surface of the Electron-Doped Cuprate Superconductor Nd2−xCexCuO4 Probed by High-Field Magnetotransport. NewJournalofPhysics, 13, Article ID: 015001. https://doi.org/10.1088/1367-2630/13/1/015001