This research is an experimental study aimed at identifying and determining the physico-mechanical properties of various granular materials used in current concretes based on local aggregates (sands, gravels) from different quarries, highlighting their intrinsic properties. The aim was also to test their specific influence on the cementitious matrix of hardened concrete. Several laboratory tests were conducted on samples from Brazzaville and Pointe-Noire. To develop a variety of concrete formulations meeting rheological criteria (deformability, bleeding, segregation) and create an optimal concrete formulation approach considering its microstructural and compacting matrix, a good granular distribution was planned, using two types of sand (rolled and crushed). This involved correcting the rolled sand with variable proportions (30% to 50%) of crushed sand. The results from the eight concrete formulations studied, using the Dreux-Gorisse method, showed that six formulations produced the expected results. Compressive strengths at 28 days ranged from 25 to 36.75 MPa. As a result, formulation 3 appears to be the best, with a mechanical strength of 36.75 MPa at 28 days, compared to formulation 1 (33.75 MPa), formulation 4 (27.25 MPa), and formulation 2 (26.65 MPa) for the Brazzaville locality. For the Pointe-Noire locality, formulation 8 was judged the best, with a characteristic mechanical strength of 29.70 MPa at 28 days, followed by formulation 7 (27.30 MPa), formulation 5 (22.80 MPa), and formulation 6 (18.30 MPa). In summary, the concretes formulated with raw sand showed better results than those with improved sands. The same was true for concrete formulations using rolled sand and gravel.
References
[1]
Makela, J.B. (2016) Approche de solution pour une formulation efficiente de béton pour fc28 comprise entre 20 et 25 Mpa dans les secteurs informels et semi-informels de la construction. Cas de la ville de Brazzaville. Mémoire d’Ingénieur, École Nationale Supérieure Polytechnique/Université Marien Ngouabi, Brazzaville Congo.
[2]
Malanda, N., Louzolo-Kimbembe, P., Ahouet, L., Makela, J.B. and Mouengue, G. (2019) Concrete Formulation Study for Informal and Semi-Informal Construction Sectors. Open Journal of Civil Engineering, 9, 57-79. https://doi.org/10.4236/ojce.2019.91005
Samba, G. and Nganga, D. (2011) Rainfall variability in Congo-Brazzaville: 1932-2007. International Journal of Climatology, 32, 854-873. https://doi.org/10.1002/joc.2311
[5]
Chanvillard. G. (2000) Le matériau béton: Connaissances générales. ALEAS.
[6]
Bourzam, A. (2005) Exploitation des gisements de sable fin de Boughezoul pour la confection du béton conventionnel. Congrès International, Réhabilitation desConstructions et Développement Durable, Alger.
[7]
Aitcin, P.C. (1996) Sur les propriétés minéralogiques et l’utilisation dans les mortiers et bétons des laitiers de hauts fourneaux de fonte thomas. Publication Technique N° 174, Extrait de la Revue des Matériaux de Construction N° 608 et 609.
[8]
Zeghichi, L. (2006) The Effet of Replacement of Naturals Aggregates by Slag Products on the Strength of Concrete. Asian Journal of Civil Engineering, 7, 27-35.
[9]
De Larrard, F. (2000) Structures granulaires et formulation des bétons. Etudes et recherches des Laboratoires des Ponts et Chaussées, 414.
[10]
Ali Abderrahmane, M., Hamid, K., Djelloul, B.A. and M’hammed, T. (2018) Etude de formulations des bétons en fonction d’un sable corrigé élaborés dans la région aride d’Adrar. École Nationale Polytechnique Maurice Audin d’Oran Département de Génie Civil et le Laboratoire LABMAT, Séminaire Internationale de Génie Civil 2018 (SIGC2018), Oran, 21-22 Novembre 2018.
[11]
Zeghichi, L., Benghazi, Z. and Noui, A. (2011) La correction de la granulométrie du sable fin par les déchets de briques et de verres. Séminaire Euro-Méditerranéen sur l’Environnement et la Sécurité Industrielle, SEMEST10, Oran.
[12]
Dreux, G. and Festa, J. (1998) Nouveau Guide du beton et de ses constituants. Huitième Edition, Eyrolles.
[13]
Tiegoum Wembe, J., Mambou Ngueyep, L.L., Elat Assoua Moukete, E., Eslami, J., Pliya, P., Ndjaka, J.B., et al. (2023) Physical, Mechanical Properties and Microstructure of Concretes Made with Natural and Crushed Aggregates: Application in Building Construction. Cleaner Materials, 7, Article ID: 100173. https://doi.org/10.1016/j.clema.2023.100173
[14]
Elat, E., Pliya, P., Pierre, A., Mbessa, M. and Noumowé, A. (2020) Microstructure and Mechanical Behavior of Concrete Based on Crushed Sand Combined with Alluvial Sand. CivilEng, 1, 181-197. https://doi.org/10.3390/civileng1030011
[15]
Abdollahnejad, Z., Luukkonen, T., Mastali, M., Giosue, C., Favoni, O., Ruello, M.L., Kinnunen, P. and Illikainen, M. (2019) Microstructural Analysis and Strength Development of One-Part Alkali-Activated Slag/Ceramic Binders under Different Curing Regimes. Waste and Biomass Valorization, 11, 3081-3096.