This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is below the unity and consequently consumes more energy than it supplies, due to the high energy amplification factor of the PWR fission reactor, the global yield is widely superior to 1. As the energy supplied by the fusion reactor is relatively low and as the neutrons supplied are mainly issued from D-D fusions (at 2.45 MeV), the problems of heat flux and neutrons damage connected with materials, as with D-T fusion reactors are reduced. Of course, there is no need to produce Tritium with this D-D fusion reactor. This type of reactor is able to incinerate any mixture of natural Uranium, natural Thorium and depleted Uranium (waste issued from enrichment plants), with natural Thorium being the best choice. No enriched fuel is needed. So, this type of reactor could constitute a source of energy for several thousands of years because it is about 90 more efficient than a standard fission reactor, such as a PWR or a Candu one, by extracting almost completely the energy from the fertile materials U238 and Th232. For the fusion part, it is based on reasonable hypotheses done on present Stellarators projects. The working of this reactor is continuous, 24 hours a day. In this paper, it will be targeted a reactor able to provide a net electric power of about 1400 MWe, as a big fission power plant.
References
[1]
Lindecker, P. (2024) Proposal of a Deuterium-Deuterium Fusion Reactor Intended for a Large Power Plant. WorldJournalofNuclearScienceandTechnology, 14, 1-58. https://doi.org/10.4236/wjnst.2024.141001
[2]
Lindecker, P. (2022) Progressive Thermalization Fusion Reactor Able to Produce Nuclear Fusions at Higher Mechanical Gain. EnergyandPowerEngineering, 14, 35-100. https://doi.org/10.4236/epe.2022.141003
[3]
World Nuclear Association (2024) Supply of Uranium. https://world-nuclear.org/information-library/nuclear-fuel-cycle/uranium-resources/supply-of-uranium
[4]
World Nuclear Association (2024) Thorium. https://world-nuclear.org/information-library/current-and-future-generation/thorium
[5]
Ember (2024) Global Electricity Review 2024. https://ember-climate.org/app/uploads/2024/05/Report-Global-Electricity-Review-2024.pdf
[6]
International Atomic Energy Agency (2016) World Distribution of Uranium Deposits (UDEPO) 2016 Edition. https://www-pub.iaea.org/MTCD/Publications/PDF/TE1843_web.pdf
[7]
Bethe, H.A. (1979) The Fusion Hybrid. PhysicsToday, 32, 44-51. https://doi.org/10.1063/1.2995553
[8]
Carminati, F., Klapisch, R., Revol, J.-P., et al. (1993) An Energy Amplifier for Cleaner and Inexhaustible Nuclear Energy Production Driven by a Particle Beam Accelerator. https://www.researchgate.net/publication/41584314_An_Energy_Amplifier_for_Cleaner_and_Inexhaustible_Nuclear_Energy_Production_Driven_by_a_Particle_Beam_Accelerator
[9]
The Center for Hydrogen Fusion Power and The Brookings Institution (2009) Report of the Conference on Hybrid Fusion-Fission Systems. http://web.mit.edu/fusion-fission/HybridsPubli/Hybrid_Fusion_Fission_Conference_A.pdf
[10]
ITER NEWSLINE (2021) Fusion World: T-15MD Comes on Line in Russia. https://www.iter.org/newsline/-/3622
[11]
Beidler, C.D., Harmeyer, E., Herrnegger, F., Igitkhanov, Y., Kendl, A., Kisslinger, J., etal. (2001) The Helias Reactor HSR4/18. NuclearFusion, 41, 1759-1766. https://doi.org/10.1088/0029-5515/41/12/303
[12]
McNally Jr., J.R. (1979) Fusion Reactivity Graphs and Tables for Charged Particle Reactions. Oak Ridge National Laboratory. https://doi.org/10.2172/5992170
[13]
Majeed, R.H. and Oudah, O.N. (2018). Achieving an Optimum Slowing-Down Energy Distribution Functions and Corresponding Reaction Rates for the (D+3He and T+3He) Fusion Reactions. Technologies and Materials for Renewable Energy, Environment and Sustainability: TMREES18, Beirut, 1-3 February 2018, Article 030048. https://doi.org/10.1063/1.5039235 https://repository.qu.edu.iq/wp-content/uploads/sites/31/2018/09/Achieving-an-optimum-slowing-down-energy-distribution-functions-and-corresponding-reaction-rates-for-the-D3He-and-T3He-fusion-reactions.pdf
[14]
Spong, D. (2012) Innovative High β Stellarators. Oak Ridge National Laboratory. https://fire.pppl.gov/FESAC_WP_HiBetaStell_Spong.pdf
[15]
Warmer, F., Beidler, C.D., Dinklage, A., Turkin, Y. and Wolf, R. (2015) Limits of Confinement Enhancement for Stellarators. FusionScienceandTechnology, 68, 727-740. https://doi.org/10.13182/fst15-131
[16]
Muldrew, S.I., Warmer, F., Lion, J. and Lux, H. (2021) Design Uncertainty for a HELIAS 5-B Stellarator Fusion Power Plant. https://pure.mpg.de/rest/items/item_3350905_4/component/file_3351771/content
[17]
Murari, A., Peluso, E., Spolladore, L., Vega, J. and Gelfusa, M. (2022) Considerations on Stellarator’s Optimization from the Perspective of the Energy Confinement Time Scaling Laws. AppliedSciences, 12, Article 2862. https://doi.org/10.3390/app12062862
[18]
Reuss, P. (2004) Exercices de neutronique. EDP Sciences.
[19]
AZO MATERIALS (n.d.) An Insight to Beryllium. https://www.azom.com/properties.aspx?ArticleID=591
[20]
Wikipedia (n.d.) Réactivité d’un assemblage de combustible nucléaire. https://fr.wikipedia.org/wiki/R%C3%A9activit%C3%A9_d%27un_assemblage_de_combustible_nucl%C3%A9aire
[21]
Reuss, P. (2003) Précis de neutronique. EDP Sciences.
[22]
USNRC Technical Training Center (n.d.) Pressurized Water Reactor (PWR) Systems. https://www.nrc.gov/reading-rm/basic-ref/students/for-educators/04.pdf
Wikipedia (n.d.) Six Factor Formula. https://en.wikipedia.org/wiki/Six_factor_formula
[25]
H. Delorme (2009) Etude du ralentissement des neutrons. http://neutronique.free.fr/Genie_Atomique/Genie_Atomique/GA_N7_N8_Ralentissement.pdf
[26]
CANDU (n.d.) Physique du réacteur. https://canteach.candu.org/Content%20Library/20070800.pdf
[27]
Patarin, L. (2022) Le cycle du combustible nucléaire. EDP Sciences.
[28]
Nuclear Energy Agency (2019) Nuclear Fuel Safety Criteria Technical Review. Second Edition. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/nea7072-fuel-safety-criteria.pdf
[29]
Grard, H. (2014) Physique, fonctionnement et sûreté des REP. EDP Sciences.
[30]
Cismondi, F.C. et al. (n.d.) Progress in EU Breeding Blanket design and Integration. https://scipub.euro-fusion.org/wp-content/uploads/eurofusion/WPPMICPR17_17709_submitted-4.pdf
[31]
Grigoriev, Y.V. and Novikov-Borodin, A.V. (n.d.) Power Installations Based on Activated Nuclear Reactions of Fission and Synthesis. https://arxiv.org/pdf/1606.04389
[32]
Guillemin, P. (2009) Recherche de la haute conversion en cycle thorium dans les réacteurs CANDU et REP—Développement des méthodes de simulation associées et étude de scénarios symbiotiques. Ph.D. Thesis, Institut National Polytechnique de Grenoble. https://theses.fr/2009INPG0176
[33]
Lindecker, P. (2022) Proposal of a Solar Thermal Power Plant at Low Temperature Using Solar Thermal Collectors. EnergyandPowerEngineering, 14, 343-386. https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/052/44052549.pdf
https://doi.org/10.4236/epe.2022.148019
[34]
Institute for Radiation Protection and Nuclear Safety (2006) R&D relative aux accidents graves dans les réacteurs à eau pressurisée: Bilan et perspectives. https://www.vie-publique.fr/files/rapport/pdf/074000028.pdf