Obesity has been increasing significantly in Brazil and worldwide, becoming a major public health issue. Traditional prevention and treatment strategies, including behavioral interventions, nutritional modifications, physical activity, pharmacotherapy, and metabolic/bariatric procedures, have proven insufficient to reverse this trend. Bariatric surgery is recognized as the most effective treatment for obesity and its comorbidities, but it carries potential long-term risks. Hybrid Duodenal Transit Bipartition is proposed as a minimally invasive “endobariatric” procedure combining endoscopic sleeve gastroplasty (ESG) with laparoscopic duodenoileal or distal duodenojejunal anastomosis. The main objective of this study is to demonstrate the importance of the intestinal metabolic component of hybrid duodenal transit bipartition. This intestinal component is responsible for optimizing and attempting to maintain weight loss and control comorbidities from an ESG through the incretin stimulus generated by the early arrival of food in the ileum or distal jejunum (duodenoileal or distal duodenojejunal anastomosis). Additionally, it is a minimally invasive procedure that preserves the entire digestive system and does not involve gastrointestinal exclusion, allowing for endoscopic and nutritional access. To date, only one patient has undergone the hybrid duodenal bipartition procedure, with satisfactory early postoperative results at 60 days and weight loss exceeding the scientific literature on patients who underwent isolated endoscopic sleeve gastroplasty. Further studies are needed to validate these results and assess the long-term metabolic benefits of this new approach.
References
[1]
Conde, W.L., Silva, I.V.D. and Ferraz, F.R. (2022) Undernutrition and Obesity Trends in Brazilian Adults from 1975 to 2019 and Its Associated Factors. Cadernos de Saúde Pública, 38, e00149721. https://doi.org/10.1590/0102-311xe00149721
[2]
Flores-Ortiz, R., Malta, D.C. and Velasquez-Melendez, G. (2019) Adult Body Weight Trends in 27 Urban Populations of Brazil from 2006 to 2016: A Population-Based Study. PLOS ONE, 14, e0213254. https://doi.org/10.1371/journal.pone.0213254
[3]
Kodaira, K., Abe, F.C., Galvão, T.F. and Silva, M.T. (2021) Time-trend in Excess Weight in Brazilian Adults: A Systematic Review and Meta-Analysis. PLOS ONE, 16, e0257755. https://doi.org/10.1371/journal.pone.0257755
[4]
Rtveladze, K., Marsh, T., Webber, L., Kilpi, F., Levy, D., Conde, W., et al. (2013) Health and Economic Burden of Obesity in Brazil. PLOS ONE, 8, e68785. https://doi.org/10.1371/journal.pone.0068785
[5]
Barboza, L.L.S., Pierangeli Costa, A., de Oliveira Araujo, R.H., Barbosa, O.G.S., Leitão, J.L.A.E.S.P., de Castro Silva, M., et al. (2023) Comparative Analysis of Temporal Trends of Obesity and Physical Inactivity in Brazil and the USA (2011-2021). BMC Public Health, 23, Article No. 2505. https://doi.org/10.1186/s12889-023-17257-4
[6]
Elmaleh-Sachs, A., Schwartz, J.L., Bramante, C.T., Nicklas, J.M., Gudzune, K.A. and Jay, M. (2023) Obesity Management in Adults. JAMA, 330, 2000-2015. https://doi.org/10.1001/jama.2023.19897
[7]
Alamuddin, N., Bakizada, Z. and Wadden, T.A. (2016) Management of Obesity. Journal of Clinical Oncology, 34, 4295-4305. https://doi.org/10.1200/jco.2016.66.8806
[8]
Jirapinyo, P., Hadefi, A., Thompson, C.C., Patai, Á.V., Pannala, R., Goelder, S.K., et al. (2024) American Society for Gastrointestinal Endoscopy-European Society of Gastrointestinal Endoscopy Guideline on Primary Endoscopic Bariatric and Metabolic Therapies for Adults with Obesity. Gastrointestinal Endoscopy, 99, 867-885.E64. https://doi.org/10.1016/j.gie.2023.12.004
[9]
Arterburn, D.E., Telem, D.A., Kushner, R.F. and Courcoulas, A.P. (2020) Benefits and Risks of Bariatric Surgery in Adults. JAMA, 324, 879-887. https://doi.org/10.1001/jama.2020.12567
[10]
Courcoulas, A.P., Daigle, C.R. and Arterburn, D.E. (2023) Long Term Outcomes of Metabolic/Bariatric Surgery in Adults. BMJ, 383, e071027. https://doi.org/10.1136/bmj-2022-071027
[11]
ElSayed, N.A., Aleppo, G., Bannuru, R.R., Bruemmer, D., Collins, B.S., Ekhlaspour, L., et al. (2023) 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes-2024. Diabetes Care, 47, S145-S157. https://doi.org/10.2337/dc24-s008
[12]
Clapp, B., Abi Mosleh, K., Glasgow, A.E., Habermann, E.B., Abu Dayyeh, B.K., Spaniolas, K., et al. (2024) Bariatric Surgery Is as Safe as Other Common Operations: An Analysis of the ACS-NSQIP. Surgery for Obesity and Related Diseases, 20, 515-525. https://doi.org/10.1016/j.soard.2023.11.017
[13]
Acosta, A., Streett, S., Kroh, M.D., Cheskin, L.J., Saunders, K.H., Kurian, M., et al. (2017) White Paper AGA: POWER—Practice Guide on Obesity and Weight Management, Education, and Resources. Clinical Gastroenterology and Hepatology, 15, 631-649.E10. https://doi.org/10.1016/j.cgh.2016.10.023
[14]
Abu Dayyeh, B.K., Edmundowicz, S. and Thompson, C.C. (2017) Clinical Practice Update: Expert Review on Endoscopic Bariatric Therapies. Gastroenterology, 152, 716-729. https://doi.org/10.1053/j.gastro.2017.01.035
[15]
Fayad, L., Adam, A., Schweitzer, M., Cheskin, L.J., Ajayi, T., Dunlap, M., et al. (2019) Endoscopic Sleeve Gastroplasty versus Laparoscopic Sleeve Gastrectomy: A Case-Matched Study. Gastrointestinal Endoscopy, 89, 782-788. https://doi.org/10.1016/j.gie.2018.08.030
[16]
Hindsø, M., Svane, M.S., Hedbäck, N., Holst, J.J., Madsbad, S. and Bojsen-Møller, K.N. (2021) The Role of GLP-1 in Postprandial Glucose Metabolism after Bariatric Surgery: A Narrative Review of Human GLP-1 Receptor Antagonist Studies. Surgery for Obesity and Related Diseases, 17, 1383-1391. https://doi.org/10.1016/j.soard.2021.01.041
[17]
Hindsø, M., Hedbäck, N., Svane, M.S., Møller, A., Martinussen, C., Jørgensen, N.B., et al. (2022) The Importance of Endogenously Secreted GLP-1 and GIP for Postprandial Glucose Tolerance and Β-Cell Function after Roux-En-Y Gastric Bypass and Sleeve Gastrectomy Surgery. Diabetes, 72, 336-347. https://doi.org/10.2337/db22-0568
[18]
Hutch, C.R. and Sandoval, D. (2017) The Role of GLP-1 in the Metabolic Success of Bariatric Surgery. Endocrinology, 158, 4139-4151. https://doi.org/10.1210/en.2017-00564
[19]
Smith, E.P., Polanco, G., Yaqub, A. and Salehi, M. (2018) Altered Glucose Metabolism after Bariatric Surgery: What’s GLP-1 Got to Do with It? Metabolism, 83, 159-166. https://doi.org/10.1016/j.metabol.2017.10.014
[20]
Larraufie, P., Roberts, G.P., McGavigan, A.K., Kay, R.G., Li, J., Leiter, A., et al. (2019) Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery. Cell Reports, 26, 1399-1408.E6. https://doi.org/10.1016/j.celrep.2019.01.047
[21]
Novaes, F.S., Vasques, A.C.J., Pareja, J.C., Knop, F.K., Tura, A., Chaim, É.A., et al. (2015) Recovery of the Incretin Effect in Type 2 Diabetic Patients after Biliopancreatic Diversion. The Journal of Clinical Endocrinology & Metabolism, 100, 1984-1988. https://doi.org/10.1210/jc.2014-4042
[22]
de Melo, P.R.E., Zorron, R., Dib, V.R.M., Madalosso, C.A.S., Ribeiro, R., Braga, T.C., et al. (2024) Sleeve Gastrectomy with Duodenal Transit Bipartition (S-DTB): Preliminary Results and Technical Aspects of Its Metabolic Structure. Surgical Science, 15, 244-264. https://doi.org/10.4236/ss.2024.154024
[23]
de Melo, P.R.E., Braga, T.C., Minari, D.F. and Cardoso Resende, J.H. (2022) Transit Bipartition with Duodeno-Ileal Anastomosis, without Duodenal Exclusion, as a First Stage of Bariatric Surgery in Severely Obese Patients: Case Report. Surgical Science, 13, 497-505. https://doi.org/10.4236/ss.2022.131158
[24]
Li, Y., Fang, D. and Liu, T. (2018) Laparoscopic Sleeve Gastrectomy Combined with Single-Anastomosis Duodenal-Jejunal Bypass in the Treatment of Type 2 Diabetes Mellitus of Patients with Body Mass Index Higher than 27.5 kg/m2 but Lower than 32.5 kg/m2. Medicine, 97, e11537. https://doi.org/10.1097/md.0000000000011537
[25]
Santoro, S., Milleo, F.Q., Malzoni, C.E., Klajner, S., Borges, P.C.M., Santo, M.A., et al. (2007) Enterohormonal Changes after Digestive Adaptation: Five-Year Results of a Surgical Proposal to Treat Obesity and Associated Diseases. Obesity Surgery, 18, 17-26. https://doi.org/10.1007/s11695-007-9371-0
[26]
Dziakova, J., Torres, A., Odovic, M., Esteban, J.M., Vázquez-Romero, M., Castillo, A., et al. (2024) Spanish Experience with Latero-Lateral Duodeno-Ileostomy + Sleeve Gastrectomy with Magnet Anastomosis System. Obesity Surgery, 34, 3569-3575. https://doi.org/10.1007/s11695-024-07432-w
[27]
Gagner, M., Cadiere, G., Sanchez-Pernaute, A., Abuladze, D., Krinke, T., Buchwald, J.N., et al. (2023) Side-to-Side Magnet Anastomosis System Duodeno-Ileostomy with Sleeve Gastrectomy: Early Multi-Center Results. Surgical Endoscopy, 37, 6452-6463. https://doi.org/10.1007/s00464-023-10134-6
[28]
Gagner, M. (2015) Safety and Efficacy of a Side-To-Side Duodeno-Ileal Anastomosis for Weight Loss and Type-2 Diabetes: Duodenal Bipartition, a Novel Metabolic Surgery Procedure. Annals of Surgical Innovation and Research, 9, Article No. 6. https://doi.org/10.1186/s13022-015-0015-0
[29]
Schlottmann, F., Ryou, M., Lautz, D., Thompson, C.C. and Buxhoeveden, R. (2021) Sutureless Duodeno-Ileal Anastomosis with Self-Assembling Magnets: Safety and Feasibility of a Novel Metabolic Procedure. Obesity Surgery, 31, 4195-4202. https://doi.org/10.1007/s11695-021-05554-z
[30]
Guedes, T.P., Martins, S., Costa, M., Pereira, S.S., Morais, T., Santos, A., et al. (2015) Detailed Characterization of Incretin Cell Distribution along the Human Small Intestine. Surgery for Obesity and Related Diseases, 11, 1323-1331. https://doi.org/10.1016/j.soard.2015.02.011
[31]
Holst, J.J., Madsbad, S., Bojsen-Møller, K.N., Svane, M.S., Jørgensen, N.B., Dirksen, C., et al. (2018) Mechanisms in Bariatric Surgery: Gut Hormones, Diabetes Resolution, and Weight Loss. Surgery for Obesity and Related Diseases, 14, 708-714. https://doi.org/10.1016/j.soard.2018.03.003
[32]
Valentí, V., Cienfuegos, J.A., Becerril Mañas, S. and Frühbeck, G. (2020) Mechanism of Bariatric and Metabolic Surgery: Beyond Surgeons, Gastroenterologists and Endocrinologists. Revista Española de Enfermedades Digestivas, 112, 229-233. https://doi.org/10.17235/reed.2020.6925/2020
[33]
Papamargaritis, D. and le Roux, C.W. (2021) Do Gut Hormones Contribute to Weight Loss and Glycaemic Outcomes after Bariatric Surgery? Nutrients, 13, Article 762. https://doi.org/10.3390/nu13030762
[34]
Thaler, J.P. and Cummings, D.E. (2009) Hormonal and Metabolic Mechanisms of Diabetes Remission after Gastrointestinal Surgery. Endocrinology, 150, 2518-2525. https://doi.org/10.1210/en.2009-0367
[35]
Lampropoulos, C., Alexandrides, T., Tsochatzis, S., Kehagias, D. and Kehagias, I. (2021) Are the Changes in Gastrointestinal Hormone Secretion Necessary for the Success of Bariatric Surgery? A Critical Review of the Literature. Obesity Surgery, 31, 4575-4584. https://doi.org/10.1007/s11695-021-05568-7
[36]
Tu, J., Wang, Y., Jin, L. and Huang, W. (2022) Bile Acids, Gut Microbiota and Metabolic Surgery. Frontiers in Endocrinology, 13, Article 929530. https://doi.org/10.3389/fendo.2022.929530
[37]
Davis, E.M. and Sandoval, D.A. (2020) Glucagon-Like Peptide-1: Actions and Influence on Pancreatic Hormone Function. In: Comprehensive Physiology, Wiley, 577-595.
[38]
Drucker, D.J. (2018) Mechanisms of Action and Therapeutic Application of Glucagon-Like Peptide-1. Cell Metabolism, 27, 740-756. https://doi.org/10.1016/j.cmet.2018.03.001
[39]
Andersen, A., Lund, A., Knop, F.K. and Vilsbøll, T. (2018) Glucagon-Like Peptide 1 in Health and Disease. Nature Reviews Endocrinology, 14, 390-403. https://doi.org/10.1038/s41574-018-0016-2
[40]
Zheng, W., Li, L. and Li, H. (2022) Phytochemicals Modulate Pancreatic Islet Β Cell Function through Glucagon-Like Peptide-1-Related Mechanisms. Biochemical Pharmacology, 197, Article ID: 114817. https://doi.org/10.1016/j.bcp.2021.114817
[41]
Holt, M.K., Richards, J.E., Cook, D.R., Brierley, D.I., Williams, D.L., Reimann, F., et al. (2018) Preproglucagon Neurons in the Nucleus of the Solitary Tract Are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food. Diabetes, 68, 21-33. https://doi.org/10.2337/db18-0729
[42]
Richard, J.E., Anderberg, R.H., Göteson, A., Gribble, F.M., Reimann, F. and Skibicka, K.P. (2015) Activation of the GLP-1 Receptors in the Nucleus of the Solitary Tract Reduces Food Reward Behavior and Targets the Mesolimbic System. PLOS ONE, 10, e0119034. https://doi.org/10.1371/journal.pone.0119034
[43]
Liu, J., Conde, K., Zhang, P., Lilascharoen, V., Xu, Z., Lim, B.K., et al. (2017) Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-Like Peptide-1 in the Paraventricular Hypothalamus. Neuron, 96, 897-909.E5. https://doi.org/10.1016/j.neuron.2017.09.042
[44]
Kim, K.S., Park, J.S., Hwang, E., Park, M.J., Shin, H.Y., Lee, Y.H., et al. (2024) GLP-1 Increases Preingestive Satiation via Hypothalamic Circuits in Mice and Humans. Science, 385, 438-446. https://doi.org/10.1126/science.adj2537
[45]
Anderberg, R.H., Richard, J.E., Eerola, K., López-Ferreras, L., Banke, E., Hansson, C., et al. (2017) Glucagon-Like Peptide 1 and Its Analogs Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight. Diabetes, 66, 1062-1073. https://doi.org/10.2337/db16-0755
[46]
Khan, R., Tomas, A. and Rutter, G.A. (2020) Effects on Pancreatic Beta and Other Islet Cells of the Glucose-Dependent Insulinotropic Polypeptide. Peptides, 125, Article ID: 170201. https://doi.org/10.1016/j.peptides.2019.170201
[47]
Christensen, M., Vedtofte, L., Holst, J.J., Vilsbøll, T. and Knop, F.K. (2011) Glucose-Dependent Insulinotropic Polypeptide: A Bifunctional Glucose-Dependent Regulator of Glucagon and Insulin Secretion in Humans. Diabetes, 60, 3103-3109. https://doi.org/10.2337/db11-0979
[48]
Nauck, M.A., Quast, D.R., Wefers, J. and Pfeiffer, A.F.H. (2021) The Evolving Story of Incretins (GIP and GLP-1) in Metabolic and Cardiovascular Disease: A Pathophysiological Update. Diabetes, Obesity and Metabolism, 23, 5-29. https://doi.org/10.1111/dom.14496
[49]
El, K., Gray, S.M., Capozzi, M.E., Knuth, E.R., Jin, E., Svendsen, B., et al. (2021) GIP Mediates the Incretin Effect and Glucose Tolerance by Dual Actions on Α Cells and Β Cells. Science Advances, 7, eabf1948. https://doi.org/10.1126/sciadv.abf1948
[50]
Kagdi, S., Lyons, S.A. and Beaudry, J.L. (2024) The Interplay of Glucose-Dependent Insulinotropic Polypeptide in Adipose Tissue. Journal of Endocrinology, 261, e230361. https://doi.org/10.1530/joe-23-0361
[51]
Christensen, M.B., Calanna, S., Holst, J.J., Vilsbøll, T. and Knop, F.K. (2014) Glucose-dependent Insulinotropic Polypeptide: Blood Glucose Stabilizing Effects in Patients with Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 99, E418-E426. https://doi.org/10.1210/jc.2013-3644
[52]
Mathiesen, D.S., Bagger, J.I., Bergmann, N.C., Lund, A., Christensen, M.B., Vilsbøll, T., et al. (2019) The Effects of Dual GLP-1/GIP Receptor Agonism on Glucagon Secretion—A Review. International Journal of Molecular Sciences, 20, Article 4092. https://doi.org/10.3390/ijms20174092
[53]
Mayendraraj, A., Rosenkilde, M.M. and Gasbjerg, L.S. (2022) GLP-1 and GIP Receptor Signaling in Beta Cells—A Review of Receptor Interactions and Co-Stimulation. Peptides, 151, Article ID: 170749. https://doi.org/10.1016/j.peptides.2022.170749
[54]
NamKoong, C., Kim, M.S., Jang, B., Lee, Y.H., Cho, Y. and Choi, H.J. (2017) Central Administration of GLP-1 and GIP Decreases Feeding in Mice. Biochemical and Biophysical Research Communications, 490, 247-252. https://doi.org/10.1016/j.bbrc.2017.06.031
[55]
Gasbjerg, L.S., Helsted, M.M., Hartmann, B., Jensen, M.H., Gabe, M.B.N., Sparre-Ulrich, A.H., et al. (2019) Separate and Combined Glucometabolic Effects of Endogenous Glucose-Dependent Insulinotropic Polypeptide and Glucagon-Like Peptide 1 in Healthy Individuals. Diabetes, 68, 906-917. https://doi.org/10.2337/db18-1123
[56]
Acuna-Goycolea, C. and van den Pol, A.N. (2005) Peptide YY3-36inhibits Both Anorexigenic Proopiomelanocortin and Orexigenic Neuropeptide Y Neurons: Implications for Hypothalamic Regulation of Energy Homeostasis. The Journal of Neuroscience, 25, 10510-10519. https://doi.org/10.1523/jneurosci.2552-05.2005
[57]
Alonso, A.M., Cork, S.C., Phuah, P., Hansen, B., Norton, M., Cheng, S., et al. (2024) The Vagus Nerve Mediates the Physiological but Not Pharmacological Effects of PYY3-36 on Food Intake. Molecular Metabolism, 81, Article ID: 101895. https://doi.org/10.1016/j.molmet.2024.101895
[58]
Reidelberger, R., Haver, A. and Chelikani, P.K. (2013) Role of Peptide YY(3–36) in the Satiety Produced by Gastric Delivery of Macronutrients in Rats. American Journal of Physiology-Endocrinology and Metabolism, 304, E944-E950. https://doi.org/10.1152/ajpendo.00075.2013
[59]
Düfer, M., Hörth, K., Wagner, R., Schittenhelm, B., Prowald, S., Wagner, T.F.J., et al. (2012) Bile Acids Acutely Stimulate Insulin Secretion of Mouse Β-Cells via Farnesoid X Receptor Activation and KATP Channel Inhibition. Diabetes, 61, 1479-1489. https://doi.org/10.2337/db11-0815
[60]
Brighton, C.A., Rievaj, J., Kuhre, R.E., Glass, L.L., Schoonjans, K., Holst, J.J., et al. (2015) Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors. Endocrinology, 156, 3961-3970. https://doi.org/10.1210/en.2015-1321
[61]
Zhu, X., Chen, Z., Zhang, B., Xie, S. and Wang, M. (2024) Bile Acid Injection Regulated Blood Glucose in T2DM Rats via the TGR5/GLP-1 Rather than FXR/FGF15 Pathway. Alternative Therapies in Health and Medicine.
[62]
Zheng, X., Chen, T., Jiang, R., Zhao, A., Wu, Q., Kuang, J., et al. (2021) Hyocholic Acid Species Improve Glucose Homeostasis through a Distinct TGR5 and FXR Signaling Mechanism. Cell Metabolism, 33, 791-803.e7. https://doi.org/10.1016/j.cmet.2020.11.017
[63]
Bohórquez, D.V., Shahid, R.A., Erdmann, A., Kreger, A.M., Wang, Y., Calakos, N., et al. (2015) Neuroepithelial Circuit Formed by Innervation of Sensory Enteroendocrine Cells. Journal of Clinical Investigation, 125, 782-786. https://doi.org/10.1172/jci78361
[64]
Liu, W.W. and Bohórquez, D.V. (2022) The Neural Basis of Sugar Preference. Nature Reviews Neuroscience, 23, 584-595. https://doi.org/10.1038/s41583-022-00613-5
[65]
Kaelberer, M.M., Rupprecht, L.E., Liu, W.W., Weng, P. and Bohórquez, D.V. (2020) Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annual Review of Neuroscience, 43, 337-353. https://doi.org/10.1146/annurev-neuro-091619-022657
[66]
Drucker, D.J. and Yusta, B. (2014) Physiology and Pharmacology of the Enteroendocrine Hormone Glucagon-Like Peptide-2. Annual Review of Physiology, 76, 561-583. https://doi.org/10.1146/annurev-physiol-021113-170317
[67]
Cazzo, E., Gestic, M.A., Utrini, M.P., Chaim, F.D.M., Geloneze, B., Pareja, J.C., et al. (2016) GLP-2: A Poorly Understood Mediator Enrolled in Various Bariatric/Metabolic Surgery-Related Pathophysiologic Mechanisms. ABCD. ArquivosBrasileiros de CirurgiaDigestiva (São Paulo), 29, 272-275. https://doi.org/10.1590/0102-6720201600040014
[68]
Drucker, D.J. (2001) Glucagon-Like Peptide 2. The Journal of Clinical Endocrinology & Metabolism, 86, 1759-1764. https://doi.org/10.1210/jcem.86.4.7386
[69]
Cazzo, E., Pareja, J.C., Chaim, E.A., Coy, C.S.R. and Magro, D.O. (2017) Glucagon-like Peptides 1 and 2 Are Involved in Satiety Modulation after Modified Biliopancreatic Diversion: Results of a Pilot Study. Obesity Surgery, 28, 506-512. https://doi.org/10.1007/s11695-017-2875-3