Axions are hypothetical particles proposed to solve the strong CP problem in QCD and may constitute a significant fraction of the dark matter in the universe. Axions are expected to be produced in superfluid neutron stars and subsequently decay, producing gamma-rays detectable by the Fermi Large Area Telescope (Fermi-LAT). Considering that light QCD axions, as opposed to axions > 1 eV, may travel a long range before they decay into gamma rays, neutron stars may appear as a spatially extended source of gamma rays. We extend our previous search for gamma rays from axions, based on a point source model, to consider the neutron star as an extended source of gamma rays. The extended consideration of neutron stars leads to higher sensitivity to searches for axions, as it will be shown. We investigate the spatial emission of gamma rays using phenomenological models of neutron star axion emission. We present models including the fundamental astrophysics and relativistic, extended gamma-ray emission from axions around neutron stars. A Monte Carlo simulation of the LAT gives us an expectation for the extended angular profile and spectrum. For a source of
100 pc, we predict a mean angular spread of
2? with gamma-ray energies in the range 10 - 200 MeV, due to the cutoff of the spin-structure function
. We demonstrate the feasibility of setting more stringent limits for axions in this mass range, excluding a range not probed by observations before. We consider projected sensitivities for mass limits on axions from RX J1856-3754, a neutron star at a distance of 130 pc. The limit based on 7.9 years of Fermi-LAT data is 3.9 meV for an inner temperature of the neutron star of 20 MeV.
References
[1]
Peccei, R.D. and Quinn, H.R. (1977) CP Conservation in the Presence of Pseudoparticles. PhysicalReviewLetters, 38, 1440-1443. https://doi.org/10.1103/physrevlett.38.1440
[2]
Sikivie, P. (2011) The Emerging Case for Axion Dark Matter. PhysicsLettersB, 695, 22-25. https://doi.org/10.1016/j.physletb.2010.11.027
[3]
Skobelev, V.V. (2000) Primakoff Effect: Synchrotron and Coulomb Mechanisms of Axion Emission. PhysicsofAtomicNuclei, 63, 1963-1968. https://doi.org/10.1134/1.1335094
[4]
Atwood, W.B., et al. (2009) The Large Area Telescope on the Fermi Gamma-Ray Space Tele-Scope Mission. The Astrophysical Journal, 697, Article 1071. http://stacks.iop.org/0004-637X/697/i=2/a=1071
[5]
Lande, J., Ackermann, M., Allafort, A., Ballet, J., Bechtol, K., Burnett, T.H., et al. (2012) Search for Spatially Extended FERMI Large Area Telescope Sources Using Two Years of Data. TheAstrophysicalJournal, 756, Article 5. https://doi.org/10.1088/0004-637x/756/1/5
[6]
Ackermann, M., et al. (2017) Search for Extended Sources in the Galactic Plane Using Six Years of Fermi-Large Area Telescope Pass 8 Data above 10 GeV. The Astrophysical Journal, 843, 139-163.
[7]
Ackermann, M., et al. (2018) The Search for Spatial Extension in High-Latitude Sources Detected by the Fermi Large Area Telescope. The Astrophysical Journal Supplement Series, 237, 32-68.
[8]
Abazajian, K.N. and Kaplinghat, M. (2012) Detection of a Gamma-Ray Source in the Galactic Center Consistent with Extended Emission from Dark Matter Annihilation and Concentrated Astrophysical Emission. PhysicalReviewD, 86, Article ID: 083511. https://doi.org/10.1103/physrevd.86.083511
[9]
Ackermann, M., Ajello, M., Albert, A., Baldini, L., Ballet, J., Barbiellini, G., et al. (2017) Observations of M31 and M33 with the Fermi Large Area Telescope: A Galactic Center Excess in Andromeda? TheAstrophysicalJournal, 836, Article 208. https://doi.org/10.3847/1538-4357/aa5c3d
[10]
Giannotti, M., Duffy, L.D. and Nita, R. (2011) New Constraints for Heavy Axion-Like Particles from Supernovae. Journal of Cosmology and Astroparticle Physics, 2011, Article 15. https://doi.org/10.1088/1475-7516/2011/01/015
[11]
Meyer, M., Horns, D. and Raue, M. (2013) First Lower Limits on the Photon-Axion-Like Particle Coupling from Very High Energy γ-Ray Observations. Physical Review D, 87, Article ID: 035027. https://doi.org/10.1103/physrevd.87.035027
[12]
Raffelt, G. and Stodolsky, L. (1988) Mixing of the Photon with Low-Mass Particles. PhysicalReviewD, 37, 1237-1249. https://doi.org/10.1103/physrevd.37.1237
[13]
Raffelt, G.G. (1996) Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles. University of Chicago Press.
[14]
Raffelt, G.G., Redondo, J. and Maira, N.V. (2011) The Mev Mass Frontier of Axion Physics. PhysicalReviewD, 84, Article ID: 103008. https://doi.org/10.1103/physrevd.84.103008
[15]
Redondo, J., Raffelt, G. and Maira, N.V. (2012) Journey at the Axion Mev Mass Frontier. JournalofPhysics: ConferenceSeries, 375, Article ID: 022004. https://doi.org/10.1088/1742-6596/375/1/022004
[16]
Sedrakian, A. (2016) Axion Cooling of Neutron Stars. Physical Review D, 93, Article ID: 065044. https://doi.org/10.1103/physrevd.93.065044
[17]
Atwood, W., et al. (2012) Pass 8: Toward the Full Realization of the Fermi-LAT Scientific Potential. arXiv: astro-ph/1303.3514.
[18]
Lloyd, S.J., Chadwick, P.M. and Brown, A.M. (2019) Constraining the Axion Mass through Gamma-Ray Observations of Pulsars. Physical Review D, 100, Article ID: 063005. https://doi.org/10.1103/physrevd.100.063005
[19]
Berenji, B., Gaskins, J. and Meyer, M. (2016) Constraints on Axions and Axionlike Particles from Fermi Large Area Telescope Observations of Neutron Stars. Physical ReviewD, 93, Article ID: 045019. https://doi.org/10.1103/physrevd.93.045019
[20]
Hamaguchi, K., Nagata, N., Yanagi, K. and Zheng, J. (2018) Limit on the Axion Decay Constant from the Cooling Neutron Star in Cassiopeia A. Physical Review D, 98, Article ID: 103015. https://doi.org/10.1103/physrevd.98.103015
[21]
Abdelhameed, A.H., Bakhlanov, S.V., Bauer, P., Bento, A., Bertoldo, E., Canonica, L., et al. (2020) New Limits on the Resonant Absorption of Solar Axions Obtained with a 169Tm-Containing Cryogenic Detector. The European Physical Journal C, 80, Article No. 376. https://doi.org/10.1140/epjc/s10052-020-7943-5
[22]
Kim, J.E. (1979) Weak-Interaction Singlet and Strongcpinvariance. PhysicalReviewLetters, 43, 103-107. https://doi.org/10.1103/physrevlett.43.103
[23]
Shifman, M.A., Vainshtein, A.I. and Zakharov, V.I. (1980) Can Confinement Ensure Natural CP Invariance of Strong Interactions? Nuclear Physics B, 166, 493-506. https://doi.org/10.1016/0550-3213(80)90209-6
[24]
Dine, M., Fischler, W. and Srednicki, M. (1981) A Simple Solution to the Strong CP Problem with a Harmless Axion. PhysicsLettersB, 104, 199-202. https://doi.org/10.1016/0370-2693(81)90590-6
[25]
Zhitnitsky, A. (1980) On Possible Suppression of the Axion Hadron Interactions. Soviet Journal of Nuclear Physics, 31, 260.
[26]
Tanabashi, M., et al. (2018) The Review of Particle Physics. Physical Review D, 98, Article ID: 030001.
[27]
Ratra, B. (1991) Expressions for Linearized Perturbations in a Massive-Scalar-Field-Dominated Cosmological Model. PhysicalReviewD, 44, 352-364. https://doi.org/10.1103/physrevd.44.352
[28]
Sánchez-Conde, M.A., Paneque, D., Bloom, E., Prada, F. and Domínguez, A. (2009) Hints of the Existence of Axionlike Particles from the γ-Ray Spectra of Cosmological Sources. PhysicalReviewD, 79, Article ID: 123511. https://doi.org/10.1103/physrevd.79.123511
[29]
Blaschke, D., Klähn, T. and Sandin, F. (2007) Equation of State at High Densities and Modern Compact Star Observations. Journal of Physics G: Nuclear and Particle Physics, 35, Article ID: 014051. https://doi.org/10.1088/0954-3899/35/1/014051
[30]
Raffelt, G.G. (2008) Astrophysical Axion Bounds. In: Kuster, M., Raffelt, G. and Beltrán, B., Eds., Axions, Springer, 51-71. https://doi.org/10.1007/978-3-540-73518-2_3
[31]
Hanhart, C., Phillips, D.R. and Reddy, S. (2001) Neutrino and Axion Emissivities of Neutron Stars from Nucleon-Nucleon Scattering Data. PhysicsLettersB, 499, 9-15. https://doi.org/10.1016/s0370-2693(00)01382-4
[32]
Raffelt, G.G. (1990) Astrophysical Methods to Constrain Axions and Other Novel Particle Phenomena. PhysicsReports, 198, 1-113. https://doi.org/10.1016/0370-1573(90)90054-6
[33]
Rüster, S.B., Werth, V., Buballa, M., Shovkovy, I.A. and Rischke, D.H. (2005) Phase Diagram of Neutral Quark Matter: Self-Consistent Treatment of Quark Masses. PhysicalReview D, 72, Article ID: 034004. https://doi.org/10.1103/physrevd.72.034004
[34]
Pavlov, G.G., Kargaltsev, O., Wong, J.A. and Garmire, G.P. (2009) Detection of X-Ray Emission from the Very Old Pulsar J0108-1431. The Astrophysical Journal, 691, 458-464. https://doi.org/10.1088/0004-637x/691/1/458
[35]
van Riper, K.A., Link, B. and Epstein, R.I. (1995) Frictional Heating and Neutron Star Thermal Evolution. TheAstrophysicalJournal, 448, Article 294. https://doi.org/10.1086/175961
Drake, J.J., Marshall, H.L., Dreizler, S., Freeman, P.E., Fruscione, A., Juda, M., et al. (2002) Is RX J1856.5-3754 a Quark Star? The Astrophysical Journal, 572, 996-1001. https://doi.org/10.1086/340368
[39]
Trümper, J.E., Burwitz, V., Haberl, F. and Zavlin, V.E. (2004) The Puzzles of RX J1856.5-3754: Neutron Star or Quark Star? Nuclear Physics B—Proceedings Supplements, 132, 560-565. https://doi.org/10.1016/j.nuclphysbps.2004.04.094
[40]
Posselt, B., Arumugasamy, P., Pavlov, G.G., Manchester, R.N., Shannon, R.M. and Kargaltsev, O. (2012) XMM-Newton Observation of the Very Old Pulsar J0108-1431. TheAstrophysicalJournal, 761, Article 117. https://doi.org/10.1088/0004-637x/761/2/117
[41]
Acero, F., Ackermann, M., Ajello, M., Albert, A., Atwood, W., Axelsson, M., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., et al. (2015) Fermi Large Area Telescope Third Source Catalog. TheAstrophysicalJournalSupplementSeries, 218, 23-64.
[42]
Arik, M., Aune, S., Barth, K., Belov, A., Bräuninger, H., Bremer, J., et al. (2015) New Solar Axion Search Using the CERN Axion Solar Telescope with 4He Filling. PhysicalReviewD, 92, Article ID: 021101. https://doi.org/10.1103/physrevd.92.021101
[43]
Alford, M.G. (2009) Quark Matter in Neutron Stars. Nuclear Physics A, 830, 385c-392c. https://doi.org/10.1016/j.nuclphysa.2009.09.034
[44]
Graham, P.W. and Rajendran, S. (2013) New Observables for Direct Detection of Axion Dark Matter. PhysicalReviewD, 88, Article ID: 035023. https://doi.org/10.1103/physrevd.88.035023
[45]
Dine, M. and Fischler, W. (1983) The Not-So-Harmless Axion. PhysicsLettersB, 120, 137-141. https://doi.org/10.1016/0370-2693(83)90639-1
[46]
Maiani, L., Petronzio, R. and Zavattini, E. (1986) Effects of Nearly Massless, Spin-Zero Particles on Light Propagation in a Magnetic Field. PhysicsLettersB, 175, 359-363. https://doi.org/10.1016/0370-2693(86)90869-5
[47]
Zavattini, E., Zavattini, G., Ruoso, G., Polacco, E., Milotti, E., Karuza, M., et al. (2006) Experimental Observation of Optical Rotation Generated in Vacuum by a Magnetic Field. PhysicalReviewLetters, 96, Article ID: 110406. https://doi.org/10.1103/physrevlett.96.110406
[48]
Viaux, N., Catelan, M., Stetson, P.B., Raffelt, G.G., Redondo, J., Valcarce, A.A.R., et al. (2013) Neutrino and Axion Bounds from the Globular Cluster M5 (NGC 5904). PhysicalReviewLetters, 111, Article ID: 231301. https://doi.org/10.1103/physrevlett.111.231301
[49]
Bertolami, M.M.M., Melendez, B.E., Althaus, L.G. and Isern, J. (2014) Revisiting the Axion Bounds from the Galactic White Dwarf Luminosity Function. JournalofCosmologyandAstroparticlePhysics, No. 2014, Article 69. https://doi.org/10.1088/1475-7516/2014/10/069
[50]
Isern, J., García-Berro, E., Torres, S. and Catalán, S. (2008) Axions and the Cooling of White Dwarf Stars. TheAstrophysicalJournal, 682, L109-L112. https://doi.org/10.1086/591042
[51]
Leinson, L.B. (2014) Axion Mass Limit from Observations of the Neutron Star in Cassiopeia A. JournalofCosmologyandAstroparticlePhysics, No. 2014, Article 31. https://doi.org/10.1088/1475-7516/2014/08/031