Based on the preonic structure of quarks obtained in a Cold genesis theory of particles (CGT), it was obtained a semi-empiric relation for the current mass of quarks specific to CGT but with the constants obtained with the aid of the Gell-Mann-Oakes-Renner formula, giving values close to those obtained by the Standard Model, the current quark’s volume at ordinary nuclear temperature being obtained as sum of theoretic apparent volumes of preonic kerneloids. The maximal densities of the current quarks: strange (s), charm (c), bottom (b), and top (t) resulted in the range (0.8 - 4.2) × 1018 kg/m3, as values which could be specific to possible quark stars, in concordance with previous results. By the preonic quark model of CGT, the possible structure of a quark star resulted from the intermediary transforming:
and the forming of composite quarks with the structure: C?(λ?-
-λ?) and C+(
-λ?-
), and of Sq-layers: C+C?C+ and C?C+C? which can form composite quarks:
References
[1]
Patrignani, C. (2016) Review of Particle Physics. ChinesePhysicsC, 40, Article ID: 100001. https://doi.org/10.1088/1674-1137/40/10/100001
[2]
Andersson, B., Gustafson, G., Ingelman, G. and Sjöstrand, T. (1983) Parton Fragmentation and String Dynamics. PhysicsReports, 97, 31-145. https://doi.org/10.1016/0370-1573(83)90080-7
[3]
Hanson, G., et al. (1975) Evidence for Jet Structure in Hadron Production be e+e-Annihilation. Physical Review Letters, 35, 1609-1612.
[4]
Perl, M.L., et al. (1976) Physical Review Letters, 35, 1489.
[5]
Herb, W., et al. (1977) Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions. Physical Review Letters, 39, 252-255.
[6]
Ynduráin, F.J. (1995) Limits on the Mass of the Gluon. PhysicsLettersB, 345, 524-526. https://doi.org/10.1016/0370-2693(94)01677-5
[7]
Chipman, D.R. and Jennings, L.D. (1963) Measurement of the Atomic Scattering Factor of Ne, Ar, Kr, and Xe. PhysicalReview, 132, 728-734. https://doi.org/10.1103/physrev.132.728
[8]
ZEUS Collaboration (2016) Limits on the Effective Quark Radius from Inclusive e-p Scattering at HERA. Physics Letters B, 757, 468-472.
[9]
Arghirescu, M. (2006) The Material Structures Genesis and Fields Effects. Ed. MatrixRom.
[10]
Arghirescu, M. (2015) The Cold Genesis of Matter and Fields. Science P.G.
[11]
Arghirescu, M. (2016) A Preonic Quasi-Crystal Quark Model Based on a Cold Genesis Theory and on the Experimentally Evidenced Neutral Boson of 34 Me. Global Journal of Physics, 5, 496-504.
[12]
Arghirescu, M. (2018) A Model of Particles Cold Forming as Collapsed Bose-Einstein Condensate of Gammons. Physics&AstronomyInternationalJournal, 2, 260-267. https://doi.org/10.15406/paij.2018.02.00096
[13]
Olavi, H. (1961) A Proposed Elementary Particle Theory Based on Interacting Classical Fields. Turun Yliopisto.
[14]
Krasznahorkay, A.J., Csatlós, M., Csige, L., Gácsi, Z., Gulyás, J., Hunyadi, M., et al. (2016) Observation of Anomalous Internal Pair Creation Inbe8: A Possible Indication of a Light, Neutral Boson. PhysicalReviewLetters, 116, Article ID: 042501. https://doi.org/10.1103/physrevlett.116.042501
[15]
Sarri, G., Poder, K., Cole, J.M., Schumaker, W., Di Piazza, A., Reville, B., et al. (2015) Generation of Neutral and High-Density Electron-positron Pair Plasmas in the Laboratory. NatureCommunications, 6, Article No. 6747. https://doi.org/10.1038/ncomms7747
[16]
Arghirescu, M. (2018) The Nuclear Force Explaining by a Bag Model Resulted from a Vortexial, Cold Genesis Model of Nucleon. Physics&AstronomyInternationalJournal, 2, 349-358. https://doi.org/10.15406/paij.2018.02.00109
[17]
Arghirescu, M. (2021) An Explanatory Model of Heavy Quarks and Particles Generating Resulted by a Cold Genesis Theory. Theoretical Physics Letters, 9, 190-217.
[18]
Cockroft, J.D. (1964) Experiments on the Interaction of High-Speed Nucleons with Atomic Nuclei. Nobel Lectures, 11 Dec. (1951). Elsevier Pub. Comp.
[19]
Mullin, W.J. and Blaylock, G. (2003) Quantum Statistics: Is There an Effective Fermion Repulsion or Boson Attraction? AmericanJournalofPhysics, 71, 1223-1231. https://doi.org/10.1119/1.1590658
[20]
Witten, E. (1984) Cosmic Separation of Phases. PhysicalReviewD, 30, 272-285. https://doi.org/10.1103/physrevd.30.272
Douchin, F. and Haensel, P. (2001) A Unified Equation of State of Dense Matter and Neutron Star Structure. Astronomy&Astrophysics, 380, 151-167. https://doi.org/10.1051/0004-6361:20011402
[26]
Kojo, T. (2016) Phenomenological Neutron Star Equations of State. TheEuropeanPhysicalJournalA, 52, 51-53. https://doi.org/10.1140/epja/i2016-16051-0
[27]
Burrows, A. and Lattimer, J.M. (1986) The Birth of Neutron Stars. TheAstrophysicalJournal, 307, 178. https://doi.org/10.1086/164405
[28]
Dung, D., Kurtscheid, C., Damm, T., Schmitt, J., Vewinger, F., Weitz, M., et al. (2017) Variable Potentials for Thermalized Light and Coupled Condensates. NaturePhotonics, 11, 565-569. https://doi.org/10.1038/nphoton.2017.139
[29]
Milonni, P.W. (1994) Introduction to Quantum Field Theory. In: Milonni, P.W., Ed., TheQuantumVacuum, Elsevier, 331-380. https://doi.org/10.1016/b978-0-08-057149-2.50014-x
[30]
Islam, M.M. and Luddy R.J. (2013) High Energy Elastic Scattering in Condensate Enclosed Chiral Bag Model and TOTEM Elastic Measurements at LHC at 7 TeV. Talk Presented at the EDS Blois, Sept. 9-13, 2013.
[31]
Yan, Y. and Tegen, R. (2001) N-N Scattering and Nucleon Quark Core. ScienceAsia, 27, 251-259. https://doi.org/10.2306/scienceasia1513-1874.2001.27.251
[32]
De Souza, M.E. (2011) Calculation of Almost All Energy Levels of Baryons. PapersinPhysics, 3, Article ID: 030003. https://doi.org/10.4279/pip.030003
[33]
Carrigan Jr., R.A. (1978) Compound Quarks as an Explanation for the Apparent Quark Mass Spectrum. Fermi Nat. Accelerator Lab.
[34]
Gell-Mann, M. (1962) Proceedings of the International Conference on High-Energy Nuclear Physics, Geneva, Switzerland.
[35]
Okubo, S. (1962) Note on Unitary Symmetry in Strong Interactions. Progress of Theoretical Physics, 27, 949-966. https://doi.org/10.1143/ptp.27.949
[36]
Barnes, V.E., Connolly, P.L., Crennell, D.J., Culwick, B.B., Delaney, W.C., Fowler, W.B., et al. (1964) Observation of a Hyperon with Strangeness Minus Three. Physical Review Letters, 12, 204-206. https://doi.org/10.1103/physrevlett.12.204
[37]
Wood, C. (2022) Inside the Proton, the Most Complicated Thing You Could Possibly Imagine. Quanta Magazine, Oct. 19 2022.
[38]
Weinberg, S. (1977) The Problem of Mass. HUTP 77/A057.
[39]
Banerjee, M.K. (1993) A Chiral Confining Model of the Nucleon. ProgressinParticleandNuclearPhysics, 31, 77-157. https://doi.org/10.1016/0146-6410(93)90049-l
[40]
Gell-Mann, M., Oakes, R.J. and Rcnner, B. (1968) Behavior of Current Divergences under SU3×SU3. Physical Review, 175, 2195-2199.
[41]
Sick, I. (2003) On the Rms-Radius of the Proton. PhysicsLettersB, 576, 62-67. https://doi.org/10.1016/j.physletb.2003.09.092
[42]
Duran, B., et al. (2023) Determining the Gluonic Gravitational Form Factors of the Proton. Nature, 615, 813-816.
[43]
Wen, X.J., Peng, G.X. and Chen, Y.D. (2007) Charge, Strangeness and Radius of Strangelets. JournalofPhysicsG: NuclearandParticlePhysics, 34, 1697-1709. https://doi.org/10.1088/0954-3899/34/7/010
[44]
Farhi, E. and Jaffe, R.L. (1984) Strange Matter. PhysicalReviewD, 30, 2379-2390. https://doi.org/10.1103/physrevd.30.2379
[45]
Johnson, K. (1975) The M.I.T. Bag Model. Acta Physica Polonica, B6, 865-892.
[46]
Jastrow, R. (1951) On the Nucleon-Nucleon Interaction. PhysicalReview, 81, 165-170. https://doi.org/10.1103/physrev.81.165
[47]
Karsch, F., Laermann, E. and Peikert, A. (2001) Quark Mass and Flavour Dependence of the QCD Phase Transition. NuclearPhysicsB, 605, 579-599. https://doi.org/10.1016/s0550-3213(01)00200-0
[48]
Iancu, E. and Venugopalan, R. (2003) The Color Glass Condensate and High Energy Scattering in QCD.
[49]
McLerran, L. (2008) A Brief Introduction to the Color Glass Condensate and the Glasma. International Symposium of Multiparticle Dynamics, Hamburg, 15-20 September 2008.
[50]
Jiménez, J.C. and Fraga, E.S. (2020) Cold Quark Matter with Heavy Quarks and the Stability of Charm Stars. PhysicalReviewD, 102, Article ID: 034015. https://doi.org/10.1103/physrevd.102.034015
[51]
Bombaci, I. (1996) The Maximum Mass of a Neutron Star. Astronomy & Astrophysics, 305, 871-877.
[52]
Chamblin, A., Cooper, F. and Nayak, G.C. (2009) Top Quark Production from Black Holes at the CERN-LHC. Physics Letters B, 672, 147-151. https://www.sciencedirect.com/journal/physics-letters-b/vol/672/issue/2
[53]
Fatema, S. and Murad, M.H. (2013) An Exact Family of Einstein-Maxwell Wyman-Adler Solution in General Relativity. InternationalJournalofTheoreticalPhysics, 52, 2508-2529. https://doi.org/10.1007/s10773-013-1538-y
[54]
Bird, D.J., Corbato, S.C., Dai, H.Y., Elbert, J.W., Green, K.D., Huang, M.A., et al. (1995) Detection of a Cosmic Ray with Measured Energy Well beyond the Expected Spectral Cutoff Due to Cosmic Microwave Radiation. TheAstrophysicalJournal, 441, 144. https://doi.org/10.1086/175344
[55]
Tsuruta, S. (2017) The Temperature of Neutron Stars. 14th Marcel Grossmann Meeting (MG14), Rome, 12-18 July 2017. https://www.worldscientific.com
[56]
Jaffe, R.L., Busza, W., Wilczek, F. and Sandweiss, J. (2000) Review of Speculative “Disaster Scenarios” at RHIC. ReviewsofModernPhysics, 72, 1125-1140. https://doi.org/10.1103/revmodphys.72.1125
[57]
Bergkvist, K.E. (1972) Nucl. Phys. B, 39, 317.
[58]
Rodrigues, H., Duarte, S.B. and de Oliveira, J.C.T. (2011) Massive Compact Stars as Quark Stars. TheAstrophysicalJournal, 730, 31. https://doi.org/10.1088/0004-637x/730/1/31
[59]
Hansson, J. and Sandin, F. (2005) Preon Stars: A New Class of Cosmic Compact Objects. PhysicsLettersB, 616, 1-7. https://doi.org/10.1016/j.physletb.2005.04.034
[60]
Lattimer, J.M. and Prakash, M. (2005) Ultimate Energy Density of Observable Cold Baryonic Matter. PhysicalReviewLetters, 94, Article ID: 111101. https://doi.org/10.1103/physrevlett.94.111101
[61]
Pons, J.A., Steiner, A.W., Prakash, M. and Lattimer, J.M. (2001) Evolution of Proto-Neutron Stars with Quarks. PhysicalReviewLetters, 86, 5223-5226. https://doi.org/10.1103/physrevlett.86.5223
[62]
Lattimer, J. and Prakash, M. (2007) Neutron Star Observations: Prognosis for Equation of State Constraints. PhysicsReports, 442, 109-165. https://doi.org/10.1016/j.physrep.2007.02.003
[63]
Tolman, R.C. (1939) Static Solutions of Einstein’s Field Equations for Spheres of Fluid. PhysicalReview, 55, 364-373. https://doi.org/10.1103/physrev.55.364
[64]
Oppenheimer, J.R. and Volkoff, G.M. (1939) On Massive Neutron Cores. PhysicalReview, 55, 374-381. https://doi.org/10.1103/physrev.55.374
[65]
Zel’dovich, Y.B. (1961) The Equation of State at Ultrahigh Densities and Its Relativistic Limitations. Zh. Eksp. Teoret. Fiz, 41, 1609.
[66]
Ootes, L.S., Wijnands, R. and Page, D. (2019) Long-Term Temperature Evolution of Neutron Stars Undergoing Episodic Accretion Outbursts. Astronomy&Astrophysics, 630, A95. https://doi.org/10.1051/0004-6361/201936035
[67]
Baym, G. and Pethick, C. (1975) Neutron Stars. AnnualReviewofNuclearScience, 25, 27-77. https://doi.org/10.1146/annurev.ns.25.120175.000331
[68]
Jaffe, R.L. and Low, F.E. (1979) Connection between Quark-Model Eigenstates and Low-Energy Scattering. PhysicalReviewD, 19, 2105-2118. https://doi.org/10.1103/physrevd.19.2105
[69]
Haensel, P., Potekhin, A.Y. and Yakovlev, D.G. (2007) Neutron Stars 1: Equation of State and Structure. Springer-Verlag.
[70]
Alcock, C., Farhi, E. and Olinto, A. (1986) Strange Stars. TheAstrophysicalJournal, 310, 261. https://doi.org/10.1086/164679
[71]
Chamel, N. and Haensel, P. (2008) Physics of Neutron Star Crusts. LivingReviewsinRelativity, 11, Article No. 10. https://doi.org/10.12942/lrr-2008-10
[72]
Biswas, S., De, J.N., Joarder, P.S., Raha, S. and Syam, D. (2017) Multifragmentation Model for the Production of Astrophysical Strangelets. PhysicalReviewC, 95, Article ID: 045201. https://doi.org/10.1103/physrevc.95.045201
[73]
Doroshenko, V., Suleimanov, V., Pühlhofer, G. and Santangelo, A. (2022) A Strangely Light Neutron Star within a Supernova Remnant. NatureAstronomy, 6, 1444-1451. https://doi.org/10.1038/s41550-022-01800-1
[74]
Agnihotri, P., Schaffner-Bielich, J. and Mishustin, I.N. (2009) Boson Stars with Repulsive Self-Interactions. PhysicalReviewD, 79, Article ID: 084033. https://doi.org/10.1103/physrevd.79.084033
[75]
Karsch, F., Laermann, E. and Peikert, A. (2001) Quark Mass and Flavour Dependence of the QCD Phase Transition. NuclearPhysicsB, 605, 579-599. https://doi.org/10.1016/s0550-3213(01)00200-0
[76]
McNulty Walsh, K. and Genzer, P. (2005) RHIC Scientists Serve up “Perfect” Liquid. Brookhaven Lab.
[77]
McNulty Walsh, K. and Genzer, P. (2010) “Perfect” Liquid Hot Enough to be Quark Soup. Brookhaven Lab.