全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Subsurface Geotechnical-Characterization near Some Buildings at the Centro Universitario de la Costa UDG (Puerto Vallarta, Jalisco, Mexico) Using Electrical Resistivity Tomography

DOI: 10.4236/ojce.2024.144029, PP. 520-535

Keywords: Geotechnical Characterization, Electrical Resistivity Tomography, Non-Invasive Soil Studies

Full-Text   Cite this paper   Add to My Lib

Abstract:

Geotechnical studies are essential in civil engineering for all building and infrastructure projects. Typically, in-situ studies involving soil sample collection through drilling are conducted. However, these invasive methods can be costly when numerous boreholes are needed to assess stratum continuity or are impractical for examining subsurface conditions beneath existing structures. Shallow geophysical exploration offers several non-invasive alternatives for subsurface characterization, with Electrical Resistivity Tomography (ERT) being particularly versatile. ERT provides detailed and accurate subsurface images through a relatively simple and fast field implementation. For this study, four 2D ERT profiles were designed and performed near three buildings at the Centro Universitario de la Costa in Puerto Vallarta, Jalisco, Mexico, using a Gito-1100 V resistivity meter from Hematec with Dipole-Dipole arrays. Basic descriptive statistics were calculated for each data set to establish criteria for outlier removal, optimizing the inversion process in Res2DInv software. The inversion results defined five geoelectric units [UG-1 (1 to 20 Ω?m), UG-2 (20 to 40 Ω?m), UG-3 (40 to 100 Ω?m), UG-4 (100 to 500 Ω?m), and UG-5 (750 to 1000 Ω?m)], consistent with previously identified geologic materials. The 2D ERT profiles allowed for the identification of lateral variations in moisture content and saturation and determined the depth of consolidated and possibly cemented materials suitable for future infrastructure projects on the university campus. This work provides a reference framework for implementing the 2D-ERT technique in Puerto Vallarta, supporting its use as a non-invasive alternative for effective subsurface characterization in geotechnical and civil engineering contexts.

References

[1]  Alarcón-Barradas, H. (2010) Exploración Geofísica en terrenos del exbasurero de Ensenada, Baja California. Master of Sciences Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada. (In Spanish)
https://cicese.repositorioinstitucional.mx/jspui/handle/1007/869
[2]  Epada, P.D., Sylvestre, G. and Tabod, T.C. (2012) Geophysical and Geotechnical Investigations of a Landslide in Kekem Area, Western Cameroon. International Journal of Geosciences, 3, 780-789.
https://doi.org/10.4236/ijg.2012.34079
[3]  Perdomo, S. (2009) Tomografía Eléctrica en apoyo de la investigación Arqueológica. Bachelor’s Degree Thesis, Universidad Nacional de la Plata. (In Spanish)
https://host170.sedici.unlp.edu.ar/server/api/core/bitstreams/a57751c1-1e2d-4309-8b2d-105ba32d7a26/content Retrieved on: January 2024
[4]  Dusabemariya, C., Qian, W., Bagaragaza, R., Faruwa, A.R. and Ali, M. (2020) Some Experiences of Resistivity and Induced Polarization Methods on the Exploration of Sulfide: A Review. Journal of Geoscience and Environment Protection, 8, 68-92.
https://doi.org/10.4236/gep.2020.811004
[5]  Samaranayake, S.A., Silva, N.D., Dahanayake, U., Wijewardane, H.O. and Subasinghe, N.D. (2022) Delineation of near Surface Water Flow Path of Wahawa Geothermal Field by Using 2D Inversion of Resistivity Data. Journal of Geoscience and Environment Protection, 10, 327-339.
https://doi.org/10.4236/gep.2022.108020
[6]  Eze, S.U., Orji, O.M., Onoriode, A.E., Saleh, S.A. and Abolarin, M.O. (2022) Integrated Geoelectrical Resistivity Method for Environmental Assessment of Landfill Leachate Pollution and Aquifer Vulnerability Studies. Journal of Geoscience and Environment Protection, 10, 1-26.
https://doi.org/10.4236/gep.2022.109001
[7]  SEGGOB, Secretaría de Gobierno General (2018) Código de Ordenamiento Territo-rial, Desarrollo Urbano y Vivienda para el Estado de Aguascalientes.
https://eservicios2.aguascalientes.gob.mx/sop/sifagg/documentos/CodigoUrb.pdf
[8]  Rendón, H.J., Ramírez, H., Chavoya, J.I., Bernal, A.C. and Castro, D.F. (2024) Saline Intrusion in Puerto Vallarta’s Freshwater Sources: Hydrogeophysical Analysis in a Mexican Coastal City. International Journal of Design & Nature and Ecodynamics, 19, 241-247.
https://doi.org/10.18280/ijdne.190126
[9]  Reyes-Vargas, P.S. (2021) Estimación del potencial de licuefacción en la zona met-ropolitana de Puerto Vallarta. Master of Sciences in Geophysics Thesis, Centro Universitario de la Costa, Universidad de Guadalajara, 109 p. (In Spanish)
[10]  Escudero, C.R., Ramirez Gaytan, A., Zamora Camacho, A., Preciado, A., Flores, K.L. and Gomez Hernandez, A. (2021) Geotechnical Zonation and Soil-Structure Interaction at Puerto Vallarta, México. Natural Hazards, 110, 247-267.
https://doi.org/10.1007/s11069-021-04945-w
[11]  Orbix ICC, Ingeniería en Control de Calidad (2015) Diseño de pavimentos, mecánica de suelos en estacionamiento vehicular frente al edificio de posgrados, al interior del Centro Universitario de la Costa de la Universidad de Guadalajara, Campus Puerto Vallarta. Puerto Vallarta, México. Unpublished Technical Report. 11 p. (In Spanish)
[12]  Instituto Nacional de Estadística y Geografía INEGI (2020) Censo de Población y Vivienda 2020. Principales resultados por localidad (ITER).
https://www.inegi.org.mx/programas/ccpv/2020/
[13]  IIEG, Instituto de Información Estadística y Geográfica del Estado de Jalisco; con base en: Geología, Edafología, esc. 1:50,000 y Uso de Suelo y Vegetación SVI, esc. 1:250,000, INEGI. Clima, CONABIO. Tomo 1 Geografía y Medio Ambiente de la Enciclopedia Temática Digital de Jalisco. MDE y MDT del conjunto de datos vecto-riales, esc. 1:50,000, INEGI. Mapa General del Estado de Jalisco 2012.
https://iieg.gob.mx/ns/wp-content/uploads/2020/07/Puerto-Vallarta.pdf
[14]  Ferrari, L., Petrone, C.M., Francalanci, L., Tagami, T., Eguchi, M., Conticelli, S., Manetti, P. and Venegas-Salgado, S. (2003) Geology of the San Pedro-Ceboruco Graben Western Trans-Mexican Volcanic Belt. Revista Mexicana de Ciencias Geológicas, 20, 165-181.
https://www.redalyc.org/pdf/572/57220302.pdf
[15]  Núñez-Cornú, F.J. and Suárez-Plascencia, C. (2006) Caracterización y análisis del sub-sistema natural de Puerto Vallarta: Atlas de Peligros Naturales, Programa de Or-denamiento Ecológico. Ayuntamiento Constitucional de Puerto Vallarta, Puerto Vallarta, Jalisco, México. Unpublished Technical Report. 11 p. (In Spanish)
[16]  Loke, M.H. and Barker, R.D. (1996) Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophysical Prospecting, 44, 131-152.
https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
[17]  Loke, M.H. (1999) Electrical Imaging Surveys for Environmental and Engineering Studies: A Practical Guide to 2D and 3D Surveys. 67 p.
https://personales.upv.es/jpadin/lokenote.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133