Piptoporellusbaudonii, previously known as Laetiporusbaudonii, is an African species that was considered to be a sister species to Laetiporussulphureus, another European species known for its medicinal value. While much is known about the edibility and antimicrobial properties of L. sulphureus, African species like P. baudonii remain understudied. This study investigated the antimicrobial and antioxidant properties of P. baudonii extracts (powder maceration) prepared using ethanol, methanol and water with fractions obtained via differential solubility in hexane, ethyl acetate and n-butanol. Before the antimicrobial analysis, the study material was accurately identified using both morphology and molecular techniques. Antimicrobial activity was tested against fungi, gram-positive, and gram-negative bacteria using a broth serial microdilution method, while antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power FRAP methods. Phylogenetic analysis confirmed the specimen as P. baudonii, with genetic material from Benin grouping it with other P. baudonii from Tanzania and other unknown regions, forming a well-supported clade (100/100). The ethanol (1.71), methanol (2.41) extracts, along with ethyl acetate (1.36), n-butanol (1.18), and hexane (12.91) fractions showed significant antioxidant activity with EC50 values below 20 μg?mL?1. The highest antimicrobial inhibition was seen in the n-butanol (58%) and ethyl acetate (54%) fractions, followed by ethanol (49%) and hexane (48%). Methanol exhibited the lowest inhibition (46.10%). These values were compared to the standard (Vitamin C). The examined extracts demonstrated high bactericidal properties, with an MBC/MIC ratio (R) of 1 to 4, particularly effective ethyl acetate against Escherichia coli (R = 2) and ethanol extract with strong activity against Enterococcus faecalis (R = 4). Further chemical and cytotoxicity studies are warranted to fully explore the pharmaceutical potential of P. baudonii.
References
[1]
Muscolo, A., Mariateresa, O., Giulio, T. and Mariateresa, R. (2024) Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. International Journal of Molecular Sciences, 25, Article 3264. https://doi.org/10.3390/ijms25063264
[2]
Pham-Huy, L.A., He, H. and Pham-Huyc, C. (2008) Free Radicals, Antioxidants in Disease and Health. International Journal of Biomedical Science, 4, 89-96. https://doi.org/10.59566/ijbs.2008.4089
[3]
Rahman, K. (2007) Studies on Free Radicals, Antioxidants, and Co-Factors. Clinical Interventions in Aging, 2, 219-236.
[4]
Halliwell, B. and Gutteridge, J.M.C. (1999) Free Radicals in Biology and Medicine. 3rd Edition, Oxford University Press.
[5]
Turkoglu, A., Duru, M.E., Mercan, N., Kivrak, I. and Gezer, K. (2007) Antioxidant and Antimicrobial Activities of Laetiporussulphureus (Bull.) Murrill. Food Chemistry, 101, 267-273. https://doi.org/10.1016/j.foodchem.2006.01.025
[6]
Yang, J., Luo, J., Tian, X., Zhao, Y., Li, Y. and Wu, X. (2024) Progress in Understanding Oxidative Stress, Aging, and Aging-Related Diseases. Antioxidants, 13, Article 394. https://doi.org/10.3390/antiox13040394
[7]
Chékireb, Z., Otmani, S. and Yousfi, N. (2017) Mitochondrie, stress oydant apoptose et strategies de prévention. Mémoir de fin d’étude en vue de l’obtention du diplôme d’étude supérieur en Biologie (DES). Université de JIJEL, Faculté des sciences, Département de Biologie moléculaire et cellullaire.
[8]
Aurousseau, B. (2002) Les radicaux libres dans l’organisme des animaux d’élevage: Conséquences sur la reproduction, la physiologie et la qualité de leurs produits. INRAE Productions Animales, 15, 67-82. https://doi.org/10.20870/productions-animales.2002.15.1.3688
[9]
Fecondo, J.V. and Augusteyn, R.C. (1983) Superoxide Dismutase, Catalase and Glutathione Peroxidase in the Human Cataractous Lens. Experimental Eye Research, 36, 15-23. https://doi.org/10.1016/0014-4835(83)90085-4
[10]
Mau, J., Chang, C., Huang, S. and Chen, C. (2004) Antioxidant Properties of Methanolic Extracts from Grifolafrondosa, Morchella esculenta and Termitomycesalbuminosus Mycelia. Food Chemistry, 87, 111-118. https://doi.org/10.1016/j.foodchem.2003.10.026
[11]
Francenia Santos-Sánchez, N., Salas-Coronado, R., Hernández-Carlos, B. and Villanueva-Cañongo, C. (2019) Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds. In: Soto-Hernández, M., García-Mateos, R. and Palma-Tenango, M., Eds., Plant Physiological Aspects of Phenolic Compounds, IntechOpen. https://doi.org/10.5772/intechopen.83815
[12]
Siti, Z. (2015) Hazardous Ingredients in Cosmetics and Personal Care Products and Health Concern: A Review. Public Health Research, 5, 7-15.
[13]
Nimse, S.B. and Pal, D. (2015) Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Advances, 5, 27986-28006. https://doi.org/10.1039/c4ra13315c
[14]
Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R. and Malm, A. (2014) Analysis of Phenolic Constituents, Antiradical and Antimicrobial Activity of Edible Mushrooms Growing Wild in Poland. LWT—Food Science and Technology, 59, 689-694. https://doi.org/10.1016/j.lwt.2014.05.041
[15]
Sevindik, M. (2018) Investigation of Antioxidant/Oxidant Status and Antimicrobial Activities of Lentinus tigrinus. Advances in Pharmacological Sciences, 2018, Article ID: 1718025. https://doi.org/10.1155/2018/1718025
[16]
Breene, W.M. (1990) Nutritional and Medicinal Value of Specialty Mushrooms. Journal of Food Protection, 53, 883-895. https://doi.org/10.4315/0362-028x-53.10.883
[17]
Golak-Siwulska, I., Kałużewicz, A., Spiżewski, T., Siwulski, M. and Sobieralski, K. (2018) Bioactive Compounds and Medicinal Properties of Oyster Mushrooms (Pleurotus Sp.). Folia Horticulturae, 30, 191-201. https://doi.org/10.2478/fhort-2018-0012
[18]
Kumar, K., Mehra, R., Guiné, R.P.F., Lima, M.J., Kumar, N., Kaushik, R., et al. (2021) Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods, 10, Article 2996. https://doi.org/10.3390/foods10122996
[19]
Manzi, P., Gambelli, L., Marconi, S., Vivanti, V. and Pizzoferrato, L. (1999) Nutrients in Edible Mushrooms: An Inter-Species Comparative Study. Food Chemistry, 65, 477-482. https://doi.org/10.1016/s0308-8146(98)00212-x
[20]
Mattila, P., Suonpää, K. and Piironen, V. (2000) Functional Properties of Edible Mushrooms. Nutrition, 16, 694-696. https://doi.org/10.1016/s0899-9007(00)00341-5
[21]
Pacheco-Hernández, Y., Lozoya-Gloria, E., Mosso-González, C., Varela-Caselis, J.L. and Villa-Ruano, N. (2024) Insights into the Chemistry and Functional Properties of Edible Mushrooms Cropped in the Northeastern Highlands of Puebla, Mexico. Applied Sciences, 14, Article 2520. https://doi.org/10.3390/app14062520
[22]
Sánchez-García, D., Burrola-Aguilar, C., Zepeda-Gómez, C. and Estrada-Zúñiga, M.E. (2020) Edible, Medicinal Wild Mushrooms: A Study in Estado de México. AgroProductividad, 13, 57-62. https://doi.org/10.32854/agrop.v13i10.1746
[23]
Keller, C., Maillard, M., Keller, J. and Hostettmann, K. (2002) Screening of European Fungi for Antibacterial, Antifungal, Larvicidal, Molluscicidal, Antioxidant and Free-Radical Scavenging Activities and Subsequent Isolation of Bioactive Compounds. Pharmaceutical Biology, 40, 518-525. https://doi.org/10.1076/phbi.40.7.518.14680
[24]
Tsoupras, A. and Davi, K.G. (2024) Bioactive Metabolites from Fungi with Anti-Inflammatory and Antithrombotic Properties: Current Status and Future Perspectives for Drug Development. In: Deshmukh, S.K., Takahashi, J.A. and Saxena, S., Eds., Fungi Bioactive Metabolites: Integration of Pharmaceutical Applications, Springer, 427-494. https://doi.org/10.1007/978-981-99-5696-8
[25]
Hwang, H.S., Lee, S.H., Baek, Y.M., Kim, S.W., Jeong, Y.K. and Yun, J.W. (2008) Production of Extracellular Polysaccharides by Submerged Mycelial Culture of Laetiporussulphureus Var. Miniatus and Their Insulinotropic Properties. Applied Microbiology and Biotechnology, 78, 419-429. https://doi.org/10.1007/s00253-007-1329-6
[26]
Li-Bin, L., Xiao, J., Zhang, Q., Han, R., Xu, B., Yang, S., et al. (2021) Eremophilane Sesquiterpenoids with Antibacterial and Anti-Inflammatory Activities from the Endophytic Fungus Septoria rudbeckiae. Journal of Agricultural and Food Chemistry, 69, 11878-11889. https://doi.org/10.1021/acs.jafc.1c04131
[27]
Liu, D., Mueed, A., Ma, H., Wang, T., Su, L. and Wang, Q. (2024) Pleurocinus ostreatus Polysaccharide Alleviates Cyclophosphamide-Induced Immunosuppression through the Gut Microbiome, Metabolome, and JAK/STAT1 Signaling Pathway. Foods, 13, Article 2679. https://doi.org/10.3390/foods13172679
[28]
Kamel, I.M., Khalil, N.M., Atalla, S.M.M. and Seleem, S.S.M. (2021) Purification, Molecular and Biochemical Characterization and Biological Applications of Hemagglutinating Lectin with Anticancer Activities from Pleurotus Ostreatus. Plant Archives, 21, 416-431. https://doi.org/10.51470/plantarchives.2021.v21.s1.065
[29]
Olou, B.A., Langer, E., Ryvarden, L., Krah, F.-S., Hounwanou, G.B., Piepenbring, M., et al. (2023) New Records and Barcode Sequence Data of Wood-Inhabiting Polypores in Benin with Notes on Their Phylogenetic Placements and Distribution. Fungal Systematics and Evolution, 11, 11-42. https://doi.org/10.3114/fuse.2023.11.02
[30]
Piepenbring, M., Maciá-Vicente, J.G., Codjia, J.E.I., Glatthorn, C., Kirk, P., Meswaet, Y., et al. (2020) Mapping Mycological Ignorance—Checklists and Diversity Patterns of Fungi Known for West Africa. IMA Fungus, 11, Article No. 33. https://doi.org/10.1186/s43008-020-00034-y
[31]
Tsakem, B., Tchamgoue, J., Kinge, R.T., Tiani, G.L.M., Teponno, R.B. and Kouam, S.F. (2024) Diversity of African Fungi, Chemical Constituents and Biological Activities. Fitoterapia, 178, Article ID: 106154. https://doi.org/10.1016/j.fitote.2024.106154
[32]
Ekandjo, L.K. and Percy, M.C. (2012) Traditional Medicinal Uses and Natural Hosts of the Genus Ganoderma in North-Eastern Parts of Namibia. Journal of Pure and Applied Microbiology, 6, 1139-1146.
[33]
El Enshasy, H., Elsayed, E.A., Aziz, R. and Wadaan, M.A. (2013) Mushrooms and Truffles: Historical Biofactories for Complementary Medicine in Africa and in the Middle East. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 620451. https://doi.org/10.1155/2013/620451
[34]
Fadeyi, O.G., Badou, S.A., Aignon, H.L., Codjia, J.E.I., Moutouama, J.K. and Yorou, N.S. (2017) Etudes ethnomycologiques et identification des champignons sauvages comestibles les plus consommés dans la région des Monts-Kouffè au Bénin (Afrique de l‘Ouest). Agron Africaine, 29, 93-109.
[35]
Kokwaro, J.O. (1983) An African Knowledge of Ethnosystematics and Its Application Totraditional Medicine, with Particular Reference to the Medicinal Use of the Fungus Engleromycesgoetzei. Bothalia, 14, 237-243. https://doi.org/10.4102/abc.v14i2.1168
[36]
Vasaitis, R., Menkis, A., Lim, Y.W., Seok, S., Tomsovsky, M., Jankovsky, L., et al. (2009) Genetic Variation and Relationships in Laetiporussulphureus S. Lat., as Determined by ITS rDNA Sequences and in Vitro Growth Rate. Mycological Research, 113, 326-336. https://doi.org/10.1016/j.mycres.2008.11.009
[37]
Ota, Y., Hattori, T., Banik, M.T., Hagedorn, G., Sotome, K., Tokuda, S., et al. (2009) The Genus Laetiporus (Basidiomycota, Polyporales) in East Asia. Mycological Research, 113, 1283-1300. https://doi.org/10.1016/j.mycres.2009.08.014
[38]
Sinanoglou, V.J., Zoumpoulakis, P., Heropoulos, G., Proestos, C., Ćirić, A., Petrovic, J., et al. (2014) Lipid and Fatty Acid Profile of the Edible Fungus Laetiporussulphurous. Antifungal and Antibacterial Properties. Journal of Food Science and Technology, 52, 3264-3272. https://doi.org/10.1007/s13197-014-1377-8
[39]
Petrović, J., Stojković, D., Reis, F.S., Barros, L., Glamočlija, J., Ćirić, A., et al. (2014) Study on Chemical, Bioactive and Food Preserving Properties of Laetiporussulphureus (Bull.: Fr.) Murr. Food & Function, 5, 1441-1451. https://doi.org/10.1039/c4fo00113c
[40]
Niemelä, T. (2013) Polypores of the Białowieża Forest. Białowieski Park Narodowy, 133.
[41]
Ryvarden, L., Decock, C., Mossebo, D., Masuka, A.J. and Melo, I. (2022) Poroid Fungi of Africa. FungiFlora.
[42]
Tibuhwa, D.D., Hussein, J.M., Ryvarden, L., Sijaona, M.E.R. and Tibell, S. (2020) A Phylogeny for the Plant Pathogen Piptoporellusbaudonii Using a Multigene Data Set. Mycologia, 112, 1017-1025. https://doi.org/10.1080/00275514.2020.1801303
[43]
Adamska, I. (2023) The Possibility of Using Sulphur Shelf Fungus (Laetiporussulphureus) in the Food Industry and in Medicine—A Review. Foods, 12, Article 1539. https://doi.org/10.3390/foods12071539
[44]
Jovanović, M.M., Marković, K.G., Grujović, M.Ž., Pavić, J., Mitić, M., Nikolić, J., et al. (2023) Anticancer Assessment and Antibiofilm Potential of Laetiporussulphureus Mushroom Originated from Serbia. Food Science & Nutrition, 11, 6393-6402. https://doi.org/10.1002/fsn3.3577
[45]
Jiri, P. (2019) Will the Sulphur Polypore (Laetiporussulphureus) Become a New Functional Food? Global Journal of Medical and Clinical Case Reports, 6, 6-9. https://doi.org/10.17352/2455-5282.000068
[46]
Zjawiony, J.K. (2004) Biologically Active Compounds from Aphyllophorales (Polypore) Fungi. Journal of Natural Products, 67, 300-310. https://doi.org/10.1021/np030372w
[47]
Thiers, B. (2019) Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium.
[48]
Gardes, M. and Bruns, T.D. (1993) ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts. Molecular Ecology, 2, 113-118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
[49]
White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M.A., et al., Eds., PCR Protocols, Elsevier, 315-322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
[50]
Vilgalys, R. and Hester, M. (1990) Rapid Genetic Identification and Mapping of Enzymatically Amplified Ribosomal DNA from Several Cryptococcus Species. Journal of Bacteriology, 172, 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
[51]
Katoh, K., Rozewicki, J. and Yamada, K.D. (2017) MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Briefings in Bioinformatics, 20, 1160-1166. https://doi.org/10.1093/bib/bbx108
[52]
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012) Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics, 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
[53]
Larsson, A. (2014) Aliview: A Fast and Lightweight Alignment Viewer and Editor for Large Datasets. Bioinformatics, 30, 3276-3278. https://doi.org/10.1093/bioinformatics/btu531
[54]
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., et al. (2012) Mrbayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology, 61, 539-542. https://doi.org/10.1093/sysbio/sys029
[55]
Rambaut, A. (2014) FigTreev1.4.2. A Graphical Viewer of Phylogenetic Trees. http://tree.bio.ed.ac.uk/software/figtree/
[56]
Kuete, V., Ngameni, B., Tangmouo, J.G., Bolla, J., Alibert-Franco, S., Ngadjui, B.T., et al. (2010) Efflux Pumps Are Involved in the Defense of Gram-Negative Bacteria against the Natural Products Isobavachalcone and Diospyrone. Antimicrobial Agents and Chemotherapy, 54, 1749-1752. https://doi.org/10.1128/aac.01533-09
[57]
Dzoyem, J.P., Fotso, S.C., Wansi, J.D., Tabenkoueng, B., Dongmo Tekapi Tsopgni, W., Toze, F.A.A., et al. (2024) Anti-Biofilm and Anti-Quorum Sensing Activities of Extract, Fractions and Compounds from the Leaves of Cassia alata L. against Yeast Pathogens. Phytomedicine Plus, 4, Article ID: 100621. https://doi.org/10.1016/j.phyplu.2024.100621
[58]
Mativandlela, S.P.N., Lall, N. and Meyer, J.J.M. (2006) Antibacterial, Antifungal and Antitubercular Activity of (the Roots of) Pelargonium reniforme (CURT) and Pelargonium sidoides (DC) (GERANIACEAE) Root Extracts. South African Journal of Botany, 72, 232-237. https://doi.org/10.1016/j.sajb.2005.08.002
[59]
Wayne, P.A. (2012) Performance Standards for Antimicrobial Susceptibility Testing: 20th Informational Supplement. Clinical and Laboratory Standards Institute (CLSI). M100-S20.
[60]
Tokam Kuaté, C.R., Bisso Ndezo, B. and Dzoyem, J.P. (2021) Synergistic Antibiofilm Effect of Thymol and Piperine in Combination with Aminoglycosides Antibiotics against Four Salmonella Enterica Serovars. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 1567017. https://doi.org/10.1155/2021/1567017
[61]
de Castro, R.D., de Souza, T.M.P.A., Bezerra, L.M.D., Ferreira, G.L.S., de Brito Costa, E.M.M. and Cavalcanti, A.L. (2015) Antifungal Activity and Mode of Action of Thymol and Its Synergism with Nystatin against Candida Species Involved with Infections in the Oral Cavity: An in Vitro Study. BMC Complementary and Alternative Medicine, 15, Article No. 417. https://doi.org/10.1186/s12906-015-0947-2
[62]
Ahmed, A.S., McGaw, L.J., Moodley, N., Vinasan Naidoo, V. and Eloff, J.N. (2014) Cytotoxic, Antimicrobial, Antioxidant, Anti-Lipoxygenase Activities and Phenolic Composition of Ozoroa and Searsia Species (Anacardiaceae) Used in South African Traditional Medicine for Treating Diarrhoea. South African Journal of Botany, 95, 9-18.
[63]
Mensor, L.L., Menezes, F.S., Leitão, G.G., Reis, A.S., Santos, T.C.d., Coube, C.S., et al. (2001) Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method. Phytotherapy Research, 15, 127-130. https://doi.org/10.1002/ptr.687
[64]
Yassa, N., Razavi Ben, H. and Hadjiakhoo, A. (2008) Free Radical Scavenging and Lipid Peroxidation Activity of the Shahani Black Grape. Pakistan Journal of Biological Sciences, 11, 2513-2516. https://doi.org/10.3923/pjbs.2008.2513.2516
[65]
Benzie, I.F.F. and Strain, J.J. (1996) The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239, 70-76. https://doi.org/10.1006/abio.1996.0292
[66]
Harrison, E., Drake, T. and Ots, R. (2020) Finalfit: Quickly Create Elegant Regression Results Tables and Plots When Modelling. R Package Version 1.0.2. https://CRAN.R-project.org/package=finalfit
[67]
De Mendiburu, F. (2021) Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-5. https://cran.r-project.org/web/packages/agricolae/index.html
[68]
Bhunjun, C.S., Phukhamsakda, C., Jayawardena, R.S., Jeewon, R., Promputtha, I. and Hyde, K.D. (2021) Investigating Species Boundaries in Colletotrichum. Fungal Diversity, 107, 107-127. https://doi.org/10.1007/s13225-021-00471-z
[69]
Duan, Y., Qi, J., Gao, J. and Liu, C. (2022) Bioactive Components of Laetiporus Species and Their Pharmacological Effects. Applied Microbiology and Biotechnology, 106, 5929-5944. https://doi.org/10.1007/s00253-022-12149-w
[70]
Patel, K., Gadewar, M., Tripathi, R., Prasad, S. and Patel, D.K. (2012) A Review on Medicinal Importance, Pharmacological Activity and Bioanalytical Aspects of β-Carboline Alkaloid “Harmine”. Asian Pacific Journal of Tropical Biomedicine, 2, 660-664. https://doi.org/10.1016/s2221-1691(12)60116-6
[71]
Lin, J. and Chou, T. (1984) Isolation and Characterization of a Lectin from Edible Mushroom, Volvariella Volvacea. The Journal of Biochemistry, 96, 35-40. https://doi.org/10.1093/oxfordjournals.jbchem.a134826
[72]
Yang, B., Kim, D., Jeong, S., Das, S., Choi, Y., Shin, J., et al. (2002) Hypoglycemic Effect of a Lentinus edodesexo-Polymer Produced from a Submerged Mycelial Culture. Bioscience, Biotechnology, and Biochemistry, 66, 937-942. https://doi.org/10.1271/bbb.66.937
[73]
Davoli, P., Mucci, A., Schenetti, L. and Weber, R.W.S. (2005) Laetiporic Acids, a Family of Non-Carotenoid Polyene Pigments from Fruit-Bodies and Liquid Cultures of Laetiporussulphureus (Polyporales, Fungi). Phytochemistry, 66, 817-823. https://doi.org/10.1016/j.phytochem.2005.01.023
[74]
Radic, N., Injac, R. and Strukelj, B. (2009) Sulphur Tuft Culinary-Medicinal Mushroom, Laetiporussulphureus (Bull.: Fr.) Murrill (Aphyllophoromycetideae): Bioactive Compounds and Pharmaceutical Effects (Review). International Journal of Medicinal Mushrooms, 11, 103-116. https://doi.org/10.1615/intjmedmushr.v11.i2.10
[75]
Weber, R.W.S., Mucci, A. and Davoli, P. (2004) Laetiporic Acid, a New Polyene Pigment from the Wood-Rotting Basidiomycete Laetiporussulphureus (Polyporales, Fungi). Tetrahedron Letters, 45, 1075-1078. https://doi.org/10.1016/j.tetlet.2003.11.073
[76]
Ishikawa, N.K., Kasuya, M.C.M. and Vanetti, M.C.D. (2001) Antibacterial Activity of Lentinula Edodes Grown in Liquid Medium. Brazilian Journal of Microbiology, 32, 206-210. https://doi.org/10.1590/s1517-83822001000300008
[77]
Sheena, N., Ajith, T.A., Mathew, A. and Janardhanan, K.K. (2003) Antibacterial Activity of Three Macrofungi, Ganoderma lucidum, Navesporusfloccosa and Phellinus rimosus Occurring in South India. Pharmaceutical Biology, 41, 564-567. https://doi.org/10.1080/13880200390501226
[78]
Sułkowska-Ziaja, K., Trepa, M., Olechowska-Jarząb, A., Nowak, P., Ziaja, M., Kała, K., et al. (2023) Natural Compounds of Fungal Origin with Antimicrobial Activity—Potential Cosmetics Applications. Pharmaceuticals, 16, Article 1200. https://doi.org/10.3390/ph16091200
[79]
Aligiannis, N., Kalpoutzakis, E., Mitaku, S. and Chinou, I.B. (2001) Composition and Antimicrobial Activity of the Essential Oils of Two Origanum Species. Journal of Agricultural and Food Chemistry, 49, 4168-4170. https://doi.org/10.1021/jf001494m
[80]
Borges-Argáez, R., Canche-Chay, C.I., Peña-Rodríguez, L.M., Said-Fernández, S. and Molina-Salinas, G.M. (2007) Antimicrobial Activity of Diospyros Anisandra. Fitoterapia, 78, 370-372. https://doi.org/10.1016/j.fitote.2007.03.004
[81]
Kuete, V. (2010) Potential of Cameroonian Plants and Derived Products against Microbial Infections: A Review. Planta Medica, 76, 1479-1491. https://doi.org/10.1055/s-0030-1250027
[82]
Fidler, G., Popa, G., Buțu, A., Rodino, S. and Cornea, C. (2013) In Vitro Cultivation of Laetiporussulphureus and Evaluation of Its Antimicrobial Properties. Scientific Bulletin Series F Biotechnologies, 17, 11-15.
[83]
Rosa, L.H., Machado, K.M.G., Jacob, C.C., Capelari, M., Rosa, C.A. and Zani, C.L. (2003) Screening of Brazilian Basidiomycetes for Antimicrobial Activity. Memórias do Instituto Oswaldo Cruz, 98, 967-974. https://doi.org/10.1590/s0074-02762003000700019
[84]
Suay, I. (2000) Screening of Basidiomycetes for Antimicrobial Activites. Antonie van Leeuwenhoek, 78, 129-140. https://doi.org/10.1023/a:1026552024021
[85]
Meng, J., Fang, Y., Qin, M., Zhuang, X. and Zhang, Z. (2012) Varietal Differences among the Phenolic Profiles and Antioxidant Properties of Four Cultivars of Spine Grape (Vitis davidii Foex) in Chongyi County (China). Food Chemistry, 134, 2049-2056. https://doi.org/10.1016/j.foodchem.2012.04.005
[86]
Dai, J. and Mumper, R.J. (2010) Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15, 7313-7352. https://doi.org/10.3390/molecules15107313
[87]
Dash, S., Patel, S. and Mishra, B.K. (2005) Oxidative Stress and Antioxidant Activity: An Overview on Assessment and Quantification with Special Reference to DPPH Assay. Journal of Chemical and Pharmaceutical Research, 7, 102-109.
[88]
Lung, M.Y. (2012) Antioxidant Properties of Polysaccharides from Laetiporussulphureus in Submerged Cultures. African Journal of Biotechnology, 11, 6350-6358. https://doi.org/10.5897/ajb11.1668
[89]
Rousta, N., Aslan, M., Yesilcimen Akbas, M., Ozcan, F., Sar, T. and Taherzadeh, M.J. (2023) Effects of Fungal Based Bioactive Compounds on Human Health: Review Paper. Critical Reviews in Food Science and Nutrition, 64, 7004-7027. https://doi.org/10.1080/10408398.2023.2178379
[90]
Fidler, G., Butu, A., Rodino, S., Butu, M. and Cornea, P.C. (2015) Antioxidant Activity, Bioactive Compounds and Antimicrobial Effect of Mushrooms Extracts. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 72, 32-35. https://doi.org/10.15835/buasvmcn-asb:10922
[91]
Sławińska, A., Radzki, W. and Kalbarczyk, J. (2013) Antioxidant Activities and Polyphenolics Content of Flammulinavelutipes Mushroom Extracts. Herba Polonica, 59, 26-36. https://doi.org/10.2478/hepo-2013-0014
[92]
Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., Petrović, P., et al. (2015) Antioxidants of Edible Mushrooms. Molecules, 20, 19489-19525. https://doi.org/10.3390/molecules201019489
[93]
Sulkowska-Ziaja, K., Muszynska, B., Motyl, P., Pasko, P. and Ekiert, H. (2012) Phenolic Compounds and Antioxidant Activity in Some Species of Polyporoid Mushrooms from Poland. International Journal of Medicinal Mushrooms, 14, 385-393. https://doi.org/10.1615/intjmedmushr.v14.i4.60
[94]
Jones, S. and Janardhanan, K.K. (2000) Antioxidant and Antitumor Activity of Ganoderma lucidum (Curt.: Fr.) P. Karst.—Reishi (Aphyllophoromycetideae) from South India. International Journal of Medicinal Mushrooms, 2, 195-200. https://doi.org/10.1615/intjmedmushr.v2.i3.20
[95]
Russell, J. and Paterson, R.R.M. (2018) Endophytic Fungi as Novel Sources of Natural Bioactive Compounds: A Review. Fungal Biology Reviews, 32, 165-177.