Life exists in the universe and therefore the astrophysical properties of the universe must be such that they allow the origin of life. We connect astrobiology and astrophysics via one astrobiological quantity—the probability of the origin of life. We show how this probability, if it is very low, will allow us to answer profound astrophysical questions such as the type of universe we live in, the fate of our universe, whether neutron stars, white and brown dwarfs evaporate and whether protons decay.
References
[1]
Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. AnnalenderPhysik, 322, 891-921. https://doi.org/10.1002/andp.19053221004
[2]
Einstein, A. (1915) Die Feldgleichungen der Gravitation. In: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Nabu Press, 844-847.
[3]
Einstein, A. (1911) Die Relativitäts-Theorie. Naturforschende Gesellschaft, 1-14.
[4]
von Laue, M. (1911) Zwei Einwände gegen die Relativitätstheorie und ihre Widerlegung. PhysikalischeZeitschrift, 13, 118-120.
[5]
von Laue, M. (1913) Das Relativitätsprinzip. Jahrbücher der Philosophie, 1, 99-128.
[6]
von Laue, M. (1911) Zwei Einwände gegen die Relativitätstheorie und ihre Widerlegung. PhysikalischeZeitschrift, 13, 118-120.
[7]
Wazeck, M. (2009) Einsteins Gegner: Die öffentliche Kontroverse um die Relativitätstheorie in den 1920er Jahren. Campus Verlag.
[8]
Einstein, A. (1907) Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. In: Stark, J., Ed., Jahrbuch der Radioaktivität und Elektronik, Forgotten Books, 411-462.
[9]
Hafele, J.C. and Keating, R.E. (1972) Around-the-World Atomic Clocks: Predicted Relativistic Time Gains. Science, 177, 166-168. https://doi.org/10.1126/science.177.4044.166
Ashby, N., Parker, T.E. and Patla, B.R. (2018) A Null Test of General Relativity Based on a Long-Term Comparison of Atomic Transition Frequencies. NaturePhysics, 14, 822-826. https://doi.org/10.1038/s41567-018-0156-2
Brumfiel, G. and Acosta, C.M. (2023) If Daylight Saving Time Seems Tricky, Try Figuring out the Time on the Moon. https://www.npr.org/2023/03/11/1162351563/if-daylight-saving-time-seems-tricky-try-figuring-out-the-time-on-the-moon
[14]
Strickland, A. (2024) Why Telling Time on the Moon Is a Conundrum for NASA. https://www.cnn.com/2024/06/01/science/moon-time-zone-science-newsletter-wt-scn/index.html
[15]
Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., et al. (2020) Planck2018 Results. Astronomy&Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910
[16]
Perlmutter, S., Aldering, G., Valle, M.D., Deustua, S., Ellis, R.S., Fabbro, S., et al. (1998) Discovery of a Supernova Explosion at Half the Age of the Universe. Nature, 391, 51-54. https://doi.org/10.1038/34124
[17]
Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. TheAstronomicalJournal, 116, 1009-1038. https://doi.org/10.1086/300499
[18]
Bertone, G. and Tait, T.M.P. (2018) A New Era in the Search for Dark Matter. Nature, 562, 51-56. https://doi.org/10.1038/s41586-018-0542-z
[19]
McGruder, C. (2024) Extinction of Light in the Galactic Halo: First Observational Evidence of the Interaction of Light and Dark Matter. Journal of Modern Physics, 15, 720-763.
[20]
Bekenstein, J.D. (2004) Relativistic Gravitation Theory for the Modified Newtonian Dynamics Paradigm. Physical Review D, 70, Article ID: 083509.
[21]
Graham, P.W., Irastorza, I.G., Lamoreaux, S.K., Lindner, A. and van Bibber, K.A. (2015) Experimental Searches for the Axion and Axion-Like Particles. AnnualReviewofNuclearandParticleScience, 65, 485-514. https://doi.org/10.1146/annurev-nucl-102014-022120
[22]
Kamaha, A.C. (2015) Improved Limits on the Existence of Dark Matter. The Final Results from the PICASSO Experiment. Ph.D. Thesis, Queens University.
[23]
Undagoitia, T.M. and Rauch, L. (2015) Dark Matter Direct-Detection Experiments. JournalofPhysicsG: NuclearandParticlePhysics, 43, Article ID: 013001. https://doi.org/10.1088/0954-3899/43/1/013001
[24]
Irastorza, I.G. and Redondo, J. (2018) New Experimental Approaches in the Search for Axion-Like Particles. ProgressinParticleandNuclearPhysics, 102, 89-159. https://doi.org/10.1016/j.ppnp.2018.05.003
[25]
Schumann, M. (2019) Direct Detection of WIMP Dark Matter: Concepts and Status. JournalofPhysicsG: NuclearandParticlePhysics, 46, Article ID: 103003. https://doi.org/10.1088/1361-6471/ab2ea5
[26]
Heros, C.P. (2020) Status of Direct and Indirect Dark Matter Searches. arXiv: 2001.06193.
[27]
Frautschi, S. (1982) Entropy in an Expanding Universe. Science, 217, 593-599. https://doi.org/10.1126/science.217.4560.593
[28]
Hawking, S.W. (1974) Black Hole Explosions? Nature, 248, 30-31. https://doi.org/10.1038/248030a0
[29]
Vikhlinin, A., Kravtsov, A.V., Burenin, R.A., Ebeling, H., Forman, W.R., Hornstrup, A., et al. (2009) Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints. TheAstrophysicalJournal, 692, 1060-1074. https://doi.org/10.1088/0004-637x/692/2/1060
[30]
Wang, Y., Kratochvil, J.M., Linde, A. and Shmakova, M. (2004) Current Observational Constraints on Cosmic Doomsday. Journal of Cosmology and Astroparticle Physics, 2004, Article No. 6. https://doi.org/10.1088/1475-7516/2004/12/006
[31]
Clowes, R.G. and Campusano, L.E. (1991) A 100-200 Mpc Group of Quasars. MonthlyNoticesoftheRoyalAstronomicalSociety, 249, 218-226. https://doi.org/10.1093/mnras/249.2.218
[32]
Gott III, J.R., Jurić, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., et al. (2005) A Map of the Universe. TheAstrophysicalJournal, 624, 463-484. https://doi.org/10.1086/428890
[33]
Clowes, R.G., Campusano, L.E., Graham, M.J. and Söchting, I.K. (2011) Two Close Large Quasar Groups of Size ∼ 350 Mpc at Z ∼ 1.2. MonthlyNoticesoftheRoyalAstronomicalSociety, 419, 556-565. https://doi.org/10.1111/j.1365-2966.2011.19719.x
[34]
Clowes, R.G., Harris, K.A., Raghunathan, S., Campusano, L.E., Söchting, I.K. and Graham, M.J. (2013) A Structure in the Early Universe at Z ∼ 1.3 That Exceeds the Homogeneity Scale of the R-W Concordance Cosmology. Monthly Notices of the RoyalAstronomicalSociety, 429, 2910-2916. https://doi.org/10.1093/mnras/sts497
[35]
Horvath, I., Hakkila, J. and Bagoly, Z. (2013) The Largest Structure of the Universe, Defined by γ-Ray Bursts. arXiv: 1311.1104.
[36]
Horváth, I., Hakkila, J. and Bagoly, Z. (2014) Possible Structure in the GRB Sky Distribution at Redshift Two. Astronomy&Astrophysics, 561, L12. https://doi.org/10.1051/0004-6361/201323020
[37]
Horváth, I., Bagoly, Z., Hakkila, J. and Tóth, L.V. (2015) New Data Support the Existence of the Hercules-Corona Borealis Great Wall. Astronomy&Astrophysics, 584, A48. https://doi.org/10.1051/0004-6361/201424829
[38]
Secrest, N.J., Hausegger, S.V., Rameez, M., Mohayaee, R., Sarkar, S. and Colin, J. (2021) A Test of the Cosmological Principle with Quasars. TheAstrophysicalJournalLetters, 908, L51. https://doi.org/10.3847/2041-8213/abdd40
[39]
Lopez, A.M., Clowes, R.G. and Williger, G.M. (2022) A Giant Arc on the Sky. MonthlyNoticesoftheRoyalAstronomicalSociety, 516, 1557-1572. https://doi.org/10.1093/mnras/stac2204
[40]
Lopez, A.M., Clowes, R.G. and Williger, G.M. (2024) A Big Ring on the Sky. Journal ofCosmologyandAstroparticlePhysics, 2024, Article No. 55. https://doi.org/10.1088/1475-7516/2024/07/055
[41]
Maartens, R. (2011) Is the Universe Homogeneous? PhilosophicalTransactionsoftheRoyalSocietyA: Mathematical, PhysicalandEngineeringSciences, 369, 5115-5137. https://doi.org/10.1098/rsta.2011.0289
[42]
McGruder III, C.H. (2024) Cosmological Gravitational Redshift, Spectral Shift and Time in the Taub-Nut Universe. JournalofModernPhysics, 15, 1448-1459. https://doi.org/10.4236/jmp.2024.159059
[43]
Adams, F. and Laughlin, G. (1999) The Five Ages of the Universe: Inside the Physics of Eternity. Free Press.
[44]
Chandrasekhar, S. (1931) The Maximum Mass of Ideal White Dwarfs. The Astrophysical Journal, 74, 81-82. https://doi.org/10.1086/143324
[45]
Kalogera, V. and Baym, G. (1996) The Maximum Mass of a Neutron Star. TheAstrophysicalJournal, 470, L61-L64. https://doi.org/10.1086/310296
[46]
Romani, R.W., Kandel, D., Filippenko, A.V., Brink, T.G. and Zheng, W. (2022) PSR J0952−0607: The Fastest and Heaviest Known Galactic Neutron Star. TheAstrophysicalJournalLetters, 934, L17. https://doi.org/10.3847/2041-8213/ac8007
[47]
Pauli, W. (1946) Exclusion Principle and Quantum Mechanics. https://www.nobelprize.org/uploads/2018/06/pauli-lecture.pdf
[48]
Page, D.N. (1976) Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. PhysicalReviewD, 13, 198-206. https://doi.org/10.1103/physrevd.13.198
[49]
Sather, E. (2018) The Mystery of the Matter Asymmetry. https://web.archive.org/web/20180404073045/ https://www.vanderbilt.edu/AnS/physics/panvini/babarsakha
[50]
Sakharov, A.D. (1967) Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe. SovietJournalofExperimentalandTheoreticalPhysicsLetters, 5, 24-27.
[51]
Mine, S. (2024) Nucleon Decay: Theory and Experimental Overview. https://agenda.infn.it/event/33778/contributions/207784/attachments/111307/158774/Mine_NDK_overview_NNN23_document.pdf
[52]
Higgs, P.G. and Lehman, N. (2014) The RNA World: Molecular Cooperation at the Origins of Life. Nature Reviews Genetics, 16, 7-17. https://doi.org/10.1038/nrg3841
[53]
Schulze-Makuch, D. and Irwin, L.N. (2018) Life in the Universe: Expectations and Constraints. 3rd Edition, Springer, 343.
[54]
Schulze-Makuch, D. and Bains, W. (2017) The Cosmic Zoo: Complex Life on Many Worlds. Springer, 232.
[55]
Gamaleldien, H., Wu, L., Olierook, H.K.H., Kirkland, C.L., Kirscher, U., Li, Z., et al. (2024) Onset of the Earth’s Hydrological Cycle Four Billion Years Ago or Earlier. NatureGeoscience, 17, 560-565. https://doi.org/10.1038/s41561-024-01450-0
[56]
Baumgartner, R.J., Van Kranendonk, M.J., Wacey, D., Fiorentini, M.L., Saunders, M., Caruso, S., et al. (2019) Nano-Porous Pyrite and Organic Matter in 3.5-Billion-Year-Old Stromatolites Record Primordial Life. Geology, 47, 1039-1043. https://doi.org/10.1130/g46365.1
[57]
Hassenkam, T. and Rosing, M.T. (2017) 3.7 Billion Year Old Biogenic Remains. Communicative&IntegrativeBiology, 10, e1380759. https://doi.org/10.1080/19420889.2017.1380759
[58]
Bell, E.A., Boehnke, P., Harrison, T.M. and Mao, W.L. (2015) Potentially Biogenic Carbon Preserved in a 4.1 Billion-Year-Old Zircon. Proceedings of the National Academy of Sciences of the United States of America 112, 14518-14521. https://doi.org/10.1073/pnas.1517557112
[59]
Kirschvink, J.L. and Weiss, B.P. (2001) Mars, Panspermia, and the Origin of Life: Where Did It All Begin? PalaeontologiaElectronica, 4. https://palaeo-electronica.org/2001_2/editor/mars.htm
[60]
Davies, R.E. (1988) Panspermia: Unlikely, Unsupported, but Just Possible. Acta Astronautica, 17, 129-135. https://doi.org/10.1016/0094-5765(88)90136-1
[61]
Schulze-Makuch, D. and Fairén, A.G. (2021) Evaluating the Microbial Habitability of Rogue Planets and Proposing Speculative Scenarios on How They Might Act as Vectors for Panspermia. Life, 11, Article 833. https://doi.org/10.3390/life11080833
[62]
Martin, W., Baross, J., Kelley, D. and Russell, M.J. (2008) Hydrothermal Vents and the Origin of Life. NatureReviewsMicrobiology, 6, 805-814. https://doi.org/10.1038/nrmicro1991
[63]
Damer, B. and Deamer, D. (2020) The Hot Spring Hypothesis for an Origin of Life. Astrobiology, 20, 429-452. https://doi.org/10.1089/ast.2019.2045
[64]
Schreiber, U., Locker-Grütjen, O. and Mayer, C. (2012) Hypothesis: Origin of Life in Deep-Reaching Tectonic Faults. Origins of Life and Evolution of Biospheres, 42, 47-54. https://doi.org/10.1007/s11084-012-9267-4
[65]
Hoyle, F. (1984) The Intelligent Universe. Holt, Rinehart and Winton.
[66]
Hoyle, F. and Wickramasinghe, N.C. (1984) From Grains to Bacteria. University College Cardiff Press.
[67]
Koonin, E.V. (2007) The Cosmological Model of Eternal Inflation and the Transition from Chance to Biological Evolution in the History of Life. BiologyDirect, 2, Article No. 15. https://doi.org/10.1186/1745-6150-2-15
[68]
Otangelo, S. (2009) Uncertainty Quantification of the Universe and Life Emerging through Unguided, Natural, Random Events. https://reasonandscience.catsboard.com/t2508-uncertainty-quantification-of-the-universe-and-life-emerging-through-unguided-natural-random-events
[69]
Follmann, H. and Brownson, C. (2009) Darwin’s Warm Little Pond Revisited: From Molecules to the Origin of Life. Naturwissenschaften, 96, 1265-1292. https://doi.org/10.1007/s00114-009-0602-1
[70]
Trevors, J.T. and Abel, D.L. (2004) Chance and Necessity Do Not Explain the Origin of Life. CellBiologyInternational, 28, 729-739. https://doi.org/10.1016/j.cellbi.2004.06.006
[71]
Gusev, V.A. and Schulze-Makuch, D. (2004) Genetic Code: Lucky Chance or Fundamental Law of Nature? PhysicsofLifeReviews, 1, 202-229. https://doi.org/10.1016/j.plrev.2004.11.001
[72]
McKay, C.P. (1996) Time for Intelligence on Other Planets. Circumstellar Habitable Zones, 405-419.
[73]
Lazcano, A. and Miller, S.L. (1994) How Long Did It Take for Life to Begin and Evolve to Cyanobacteria? JournalofMolecularEvolution, 39, 546-554. https://doi.org/10.1007/bf00160399
[74]
Leibundgut, B., Schommer, R., Phillips, M., Riess, A., Schmidt, B., Spyromilio, J., et al. (1996) Time Dilation in the Light Curve of the Distant Type IA Supernova SN 1995K. TheAstrophysicalJournal, 466, L21-L24. https://doi.org/10.1086/310164
[75]
Goldhaber, G., Groom, D.E., Kim, A., Aldering, G., Astier, P., Conley, A., et al. (2001) Timescale Stretch Parameterization of Type IA Supernova b-Band Light Curves. TheAstrophysicalJournal, 558, 359-368. https://doi.org/10.1086/322460
[76]
Block, D.L. (2012) Georges Lemaître and Stigler’s Law of Eponymy. In: Holder, R. and Mitton, S., Eds., Georges Lemaître: Life, Science and Legacy, Springer, 89-96. https://doi.org/10.1007/978-3-642-32254-9_8
[77]
Foley, R.J., Filippenko, A.V., Leonard, D.C., Riess, A.G., Nugent, P. and Perlmutter, S. (2005) A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type IA Supernova 1997EX. The Astrophysical Journal, 626, L11-L14. https://doi.org/10.1086/431241
[78]
Weber, P. and Greenberg, J.M. (1985) Can Spores Survive in Interstellar Space? Nature, 316, 403-407. https://doi.org/10.1038/316403a0
[79]
Pasini, L. (2017) Panspermia—The Survival of Micro-Organisms during Hypervelocity Impact Events. Master’s Thesis, University of Kent.
[80]
Melosh, H.J. (1988) The Rocky Road to Panspermia. Nature, 332, 687-688. https://doi.org/10.1038/332687a0
[81]
Secker, J., Lepock, J. and Wesson, P. (1994) Damage Due to Ultraviolet and Ionizing Radiation during the Ejection of Shielded Micro-Organisms from the Vicinity of 1M? Main Sequence and Red Giant Stars. AstrophysicsandSpaceScience, 219, 1-28. https://doi.org/10.1007/bf00657856
[82]
Ginsburg, I., Lingam, M. and Loeb, A. (2018) Galactic Panspermia. TheAstrophysicalJournalLetters, 868, L12. https://doi.org/10.3847/2041-8213/aaef2d
[83]
Lingam, M. and Loeb, A. (2017) Enhanced Interplanetary Panspermia in the TRAPPIST-1 System. Proceedings of the National Academy of Sciences of the United States of America, 114, 6689-6693. https://doi.org/10.1073/pnas.1703517114
[84]
Wondrak, M.F., van Suijlekom, W.D. and Falcke, H. (2023) Gravitational Pair Production and Black Hole Evaporation. Physical Review Letters, 130, Article ID: 221502. https://doi.org/10.1103/physrevlett.130.221502