全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of MUC1 as a Novel Oncogene of Fusobacterium nucleatum-Associated Colorectal Cancer by a Combined Bioinformatics and Experimental Approach

DOI: 10.4236/jct.2024.1510034, PP. 362-380

Keywords: CRC, F. nucleatum, DEGs, MUC1

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Fusobacterium nucleatum can cause opportunistic and chronic infections and has recently been shown to be involved in colorectal cancer. However, the speci?c mechanism by which F. nucleatum induces colorectal carcinoma remains unclear. Methods: We downloaded the GSE110223, GSE110224, GSE113513 and GSE122183 microarray datasets from the Gene Expression Omnibus (GEO) database. Identification of differentially expressed genes (DEGs) related to F. nucleatum in CRC by overlapping data sets was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome pathway (KEGG) analyses were used for enrichment analysis. Moreover, Cytoscape software constructed a protein-protein interaction (PPI) network of differentially expressed genes. Finally, western blot and RT-qPCR analysis identified the relative protein and mRNA expression of hub genes in the cell model. Results: In total, 118 DEGs in F. nucleatum-associated CRC were screened from nonoverlapping microarray data, among which 20 upregulated and 98 downregulated DEGs were identified. The 118 DEGs were significantly correlated with diverse functions and pathways. The hub gene MUC1 had higher centrality scores in the PPI network, and the top 5 closely interacting hub genes, SLC7A11, AGR2, KRT18, CARTPT and TSPYL5, were identified. Conclusion: Our evidence suggests that the identified DEGs associated with F. nucleatum enhance our comprehension of the molecular Mechanisms underlying the tumorigenesis and development of CRC and might be used as molecular targets and diagnostic biomarkers for the treatment of CRC.

References

[1]  Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2]  Castellarin, M., Warren, R.L., Freeman, J.D., Dreolini, L., Krzywinski, M., Strauss, J., et al. (2011) Fusobacterium nucleatum Infection Is Prevalent in Human Colorectal Carcinoma. Genome Research, 22, 299-306.
https://doi.org/10.1101/gr.126516.111
[3]  Brennan, C.A. and Garrett, W.S. (2018) Fusobacterium nucleatum—Symbiont, Opportunist and Oncobacterium. Nature Reviews Microbiology, 17, 156-166.
https://doi.org/10.1038/s41579-018-0129-6
[4]  Kostic, A.D., Chun, E., Robertson, L., Glickman, J.N., Gallini, C.A., Michaud, M., et al. (2013) Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host & Microbe, 14, 207-215.
https://doi.org/10.1016/j.chom.2013.07.007
[5]  Shang, F. and Liu, H. (2018) Fusobacterium nucleatum and Colorectal Cancer: A Review. World Journal of Gastrointestinal Oncology, 10, 71-81.
https://doi.org/10.4251/wjgo.v10.i3.71
[6]  Brody, H. (2015) Colorectal Cancer. Nature, 521, S1.
https://doi.org/10.1038/521s1a
[7]  Liang, B., Li, C. and Zhao, J. (2016) Identification of Key Pathways and Genes in Colorectal Cancer Using Bioinformatics Analysis. Medical Oncology, 33, Article No. 111.
https://doi.org/10.1007/s12032-016-0829-6
[8]  Nannini, M., Pantaleo, M.A., Maleddu, A., Astolfi, A., Formica, S. and Biasco, G. (2009) Gene Expression Profiling in Colorectal Cancer Using Microarray Technologies: Results and Perspectives. Cancer Treatment Reviews, 35, 201-209.
https://doi.org/10.1016/j.ctrv.2008.10.006
[9]  Guo, M., You, C. and Dou, J. (2018) Role of Transmembrane Glycoprotein Mucin 1 (MUC1) in Various Types of Colorectal Cancer and Therapies: Current Research Status and Updates. Biomedicine & Pharmacotherapy, 107, 1318-1325.
https://doi.org/10.1016/j.biopha.2018.08.109
[10]  Agrawal, B., Gupta, N. and Konowalchuk, J.D. (2018) MUC1 Mucin: A Putative Regulatory (Checkpoint) Molecule of T Cells. Frontiers in Immunology, 9, Article 2391.
https://doi.org/10.3389/fimmu.2018.02391
[11]  Yin, L., Li, Y., Ren, J., Kuwahara, H. and Kufe, D. (2003) Human MUC1 Carcinoma Antigen Regulates Intracellular Oxidant Levels and the Apoptotic Response to Oxidative Stress. Journal of Biological Chemistry, 278, 35458-35464.
https://doi.org/10.1074/jbc.m301987200
[12]  Nath, S. and Mukherjee, P. (2014) MUC1: A Multifaceted Oncoprotein with a Key Role in Cancer Progression. Trends in Molecular Medicine, 20, 332-342.
https://doi.org/10.1016/j.molmed.2014.02.007
[13]  Schroeder, J.A., Masri, A.A., Adriance, M.C., Tessier, J.C., Kotlarczyk, K.L., Thompson, M.C., et al. (2004) MUC1 Overexpression Results in Mammary Gland Tumorigenesis and Prolonged Alveolar Differentiation. Oncogene, 23, 5739-5747.
https://doi.org/10.1038/sj.onc.1207713
[14]  Rakoff-Nahoum, S. (2006) Why Cancer and Inflammation? Yale Journal of Biology and Medicine, 79, 123-130.
[15]  Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2014) STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452.
https://doi.org/10.1093/nar/gku1003
[16]  Mendes, R.T., Nguyen, D., Stephens, D., Pamuk, F., Fernandes, D., Van Dyke, T.E., et al. (2016) Endothelial Cell Response to Fusobacterium nucleatum. Infection and Immunity, 84, 2141-2148.
https://doi.org/10.1128/iai.01305-15
[17]  Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2016) KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic Acids Research, 45, D353-D361.
https://doi.org/10.1093/nar/gkw1092
[18]  The Lancet Oncology, (2017) Colorectal Cancer: A Disease of the Young? The Lancet Oncology, 18, 413.
https://doi.org/10.1016/s1470-2045(17)30202-4
[19]  Dalton-Griffin, L. and Kellam, P. (2009) Infectious Causes of Cancer and Their Detection. Journal of Biology, 8, Article No. 67.
https://doi.org/10.1186/jbiol168
[20]  zur Hausen, H. (2009) The Search for Infectious Causes of Human Cancers: Where and Why. Virology, 392, 1-10.
https://doi.org/10.1016/j.virol.2009.06.001
[21]  Rubinstein, M.R., Wang, X., Liu, W., Hao, Y., Cai, G. and Han, Y.W. (2013) Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host & Microbe, 14, 195-206.
https://doi.org/10.1016/j.chom.2013.07.012
[22]  Chen, Y., Peng, Y., Yu, J., Chen, T., Wu, Y., Shi, L., et al. (2017) Invasive Fusobacterium nucleatum Activates β-Catenin Signaling in Colorectal Cancer via a TLR4/P-PAK1 Cascade. Oncotarget, 8, 31802-31814.
https://doi.org/10.18632/oncotarget.15992
[23]  Rubinstein, M.R., Baik, J.E., Lagana, S.M., Han, R.P., Raab, W.J., Sahoo, D., et al. (2019) Fusobacterium nucleatum Promotes Colorectal Cancer by Inducing Wnt/β-Catenin Modulator Annexin A1. EMBO Reports, 20, e47638.
https://doi.org/10.15252/embr.201847638
[24]  Tilg, H., Adolph, T.E., Gerner, R.R. and Moschen, A.R. (2018) The Intestinal Microbiota in Colorectal Cancer. Cancer Cell, 33, 954-964.
https://doi.org/10.1016/j.ccell.2018.03.004
[25]  Arthur, J.C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J.M., Fan, T., et al. (2012) Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science, 338, 120-123.
https://doi.org/10.1126/science.1224820
[26]  Kulasingam, V. and Diamandis, E.P. (2008) Strategies for Discovering Novel Cancer Biomarkers through Utilization of Emerging Technologies. Nature Clinical Practice Oncology, 5, 588-599.
https://doi.org/10.1038/ncponc1187
[27]  Bahrami, A., Khazaei, M., Hasanzadeh, M., ShahidSales, S., Joudi Mashhad, M., Farazestanian, M., et al. (2017) Therapeutic Potential of Targeting PI3K/AKT Pathway in Treatment of Colorectal Cancer: Rational and Progress. Journal of Cellular Biochemistry, 119, 2460-2469.
https://doi.org/10.1002/jcb.25950
[28]  Uddin, S., P.Bavi, P., Hussain, A.R., Alsbeih, G., Al-Sanea, N., AbdulJabbar, A., et al. (2009) Leptin Receptor Expression in Middle Eastern Colorectal Cancer and Its Potential Clinical Implication. Carcinogenesis, 30, 1832-1840.
https://doi.org/10.1093/carcin/bgp145
[29]  Uddin, S., Hussain, A.R., Khan, O.S. and Al-Kuraya, K.S. (2013) Role of Dysregulated Expression of Leptin and Leptin Receptors in Colorectal Carcinogenesis. Tumor Biology, 35, 871-879.
https://doi.org/10.1007/s13277-013-1166-4
[30]  Tang, Y., Zhao, Y., Song, X., Song, X., Niu, L. and Xie, L. (2019) Tumor-Derived Exosomal miRNA-320d as a Biomarker for Metastatic Colorectal Cancer. Journal of Clinical Laboratory Analysis, 33, e23004.
https://doi.org/10.1002/jcla.23004
[31]  Lau, S.K., Weiss, L.M. and Chu, P.G. (2004) Differential Expression of MUC1, MUC2, and MUC5AC in Carcinomas of Various Sites an Immunohistochemical Study. American Journal of Clinical Pathology, 122, 61-69.
https://doi.org/10.1309/9r66-73qe-c06d-86y4
[32]  Sheng, Y.H., Triyana, S., Wang, R., Das, I., Gerloff, K., Florin, T.H., et al. (2013) MUC1 and MUC13 Differentially Regulate Epithelial Inflammation in Response to Inflammatory and Infectious Stimuli. Mucosal Immunology, 6, 557-568.
https://doi.org/10.1038/mi.2012.98
[33]  Dharmani, P., Strauss, J., Ambrose, C., Allen-Vercoe, E. and Chadee, K. (2011) Fusobacterium nucleatum Infection of Colonic Cells Stimulates MUC2 Mucin and Tumor Necrosis Factor α. Infection and Immunity, 79, 2597-2607.
https://doi.org/10.1128/iai.05118-11
[34]  Al-Khayal, K., Abdulla, M., Al-Obaid, O., Zubaidi, A., Vaali-Mohammed, M., Alsheikh, A., et al. (2016) Differential Expression of Mucins in Middle Eastern Patients with Colorectal Cancer. Oncology Letters, 12, 393-400.
https://doi.org/10.3892/ol.2016.4672
[35]  Tian, S., Hu, J., Tao, K., Wang, J., Chu, Y., Li, J., et al. (2018) Secreted AGR2 Promotes Invasion of Colorectal Cancer Cells via Wnt11-Mediated Non-Canonical Wnt Signaling. Experimental Cell Research, 364, 198-207.
https://doi.org/10.1016/j.yexcr.2018.02.004
[36]  Martisova, A., Sommerova, L., Kuricova, K., Podhorec, J., Vojtesek, B., Kankova, K., et al. (2019) AGR2 Silencing Contributes to Metformin-Dependent Sensitization of Colorectal Cancer Cells to Chemotherapy. Oncology Letters, 18, 4964-4973.
https://doi.org/10.3892/ol.2019.10800
[37]  Zhang, J., Hu, S. and Li, Y. (2019) KRT18 Is Correlated with the Malignant Status and Acts as an Oncogene in Colorectal Cancer. Bioscience Reports, 39, BSR20190884.
https://doi.org/10.1042/bsr20190884
[38]  Huang, C. and Luo, H. (2018) miR-19-5p Enhances Tumorigenesis in Human Colorectal Cancer Cells by Targeting TSPYL5. DNA and Cell Biology, 37, 23-30.
https://doi.org/10.1089/dna.2017.3804
[39]  Ju, H., Lu, Y., Chen, D., Tian, T., Mo, H., Wei, X., et al. (2016) Redox Regulation of Stem-Like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications. Theranostics, 6, 1160-1175.
https://doi.org/10.7150/thno.14848
[40]  Slattery, M.L., Lundgreen, A., Hines, L., Wolff, R.K., Torres-Mejia, G., Baumgartner, K.N., et al. (2015) Energy Homeostasis Genes and Breast Cancer Risk: The Influence of Ancestry, Body Size, and Menopausal Status, the Breast Cancer Health Disparities Study. Cancer Epidemiology, 39, 1113-1122.
https://doi.org/10.1016/j.canep.2015.08.012
[41]  Zhang, S., Cai, S. and Ma, Y. (2018) Association between Fusobacterium nucleatum and Colorectal Cancer: Progress and Future Directions. Journal of Cancer, 9, 1652-1659.
https://doi.org/10.7150/jca.24048
[42]  Tjalsma, H., Boleij, A., Marchesi, J.R. and Dutilh, B.E. (2012) A Bacterial Driver-Passenger Model for Colorectal Cancer: Beyond the Usual Suspects. Nature Reviews Microbiology, 10, 575-582.
https://doi.org/10.1038/nrmicro2819
[43]  Kaplan, C.W., Lux, R., Haake, S.K. and Shi, W. (2008) The Fusobacterium nucleatum Outer Membrane Protein Radd Is an Arginine-Inhibitable Adhesin Required for Inter-Species Adherence and the Structured Architecture of Multispecies Biofilm. Molecular Microbiology, 71, 35-47.
https://doi.org/10.1111/j.1365-2958.2008.06503.x
[44]  Jung, Y., Jun, H. and Choi, B. (2017) Porphyromonas gingivalis Suppresses Invasion of Fusobacterium nucleatum into Gingival Epithelial Cells. Journal of Oral Microbiology, 9, Article ID: 1320193.
https://doi.org/10.1080/20002297.2017.1320193

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133