Identification of MUC1 as a Novel Oncogene of Fusobacterium nucleatum-Associated Colorectal Cancer by a Combined Bioinformatics and Experimental Approach
Background: Fusobacterium nucleatum can cause opportunistic and chronic infections and has recently been shown to be involved in colorectal cancer. However, the speci?c mechanism by which F. nucleatum induces colorectal carcinoma remains unclear. Methods: We downloaded the GSE110223, GSE110224, GSE113513 and GSE122183 microarray datasets from the Gene Expression Omnibus (GEO) database. Identification of differentially expressed genes (DEGs) related to F. nucleatum in CRC by overlapping data sets was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome pathway (KEGG) analyses were used for enrichment analysis. Moreover, Cytoscape software constructed a protein-protein interaction (PPI) network of differentially expressed genes. Finally, western blot and RT-qPCR analysis identified the relative protein and mRNA expression of hub genes in the cell model. Results: In total, 118 DEGs in F. nucleatum-associated CRC were screened from nonoverlapping microarray data, among which 20 upregulated and 98 downregulated DEGs were identified. The 118 DEGs were significantly correlated with diverse functions and pathways. The hub gene MUC1 had higher centrality scores in the PPI network, and the top 5 closely interacting hub genes, SLC7A11, AGR2, KRT18, CARTPT and TSPYL5, were identified. Conclusion: Our evidence suggests that the identified DEGs associated with F. nucleatum enhance our comprehension of the molecular Mechanisms underlying the tumorigenesis and development of CRC and might be used as molecular targets and diagnostic biomarkers for the treatment of CRC.
References
[1]
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: ACancerJournalforClinicians, 68, 394-424. https://doi.org/10.3322/caac.21492
[2]
Castellarin, M., Warren, R.L., Freeman, J.D., Dreolini, L., Krzywinski, M., Strauss, J., et al. (2011) Fusobacteriumnucleatum Infection Is Prevalent in Human Colorectal Carcinoma. GenomeResearch, 22, 299-306. https://doi.org/10.1101/gr.126516.111
[3]
Brennan, C.A. and Garrett, W.S. (2018) Fusobacterium nucleatum—Symbiont, Opportunist and Oncobacterium. NatureReviewsMicrobiology, 17, 156-166. https://doi.org/10.1038/s41579-018-0129-6
[4]
Kostic, A.D., Chun, E., Robertson, L., Glickman, J.N., Gallini, C.A., Michaud, M., et al. (2013) Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. CellHost&Microbe, 14, 207-215. https://doi.org/10.1016/j.chom.2013.07.007
[5]
Shang, F. and Liu, H. (2018) Fusobacteriumnucleatum and Colorectal Cancer: A Review. WorldJournalofGastrointestinalOncology, 10, 71-81. https://doi.org/10.4251/wjgo.v10.i3.71
[6]
Brody, H. (2015) Colorectal Cancer. Nature, 521, S1. https://doi.org/10.1038/521s1a
[7]
Liang, B., Li, C. and Zhao, J. (2016) Identification of Key Pathways and Genes in Colorectal Cancer Using Bioinformatics Analysis. MedicalOncology, 33, Article No. 111. https://doi.org/10.1007/s12032-016-0829-6
[8]
Nannini, M., Pantaleo, M.A., Maleddu, A., Astolfi, A., Formica, S. and Biasco, G. (2009) Gene Expression Profiling in Colorectal Cancer Using Microarray Technologies: Results and Perspectives. CancerTreatmentReviews, 35, 201-209. https://doi.org/10.1016/j.ctrv.2008.10.006
[9]
Guo, M., You, C. and Dou, J. (2018) Role of Transmembrane Glycoprotein Mucin 1 (MUC1) in Various Types of Colorectal Cancer and Therapies: Current Research Status and Updates. Biomedicine&Pharmacotherapy, 107, 1318-1325. https://doi.org/10.1016/j.biopha.2018.08.109
[10]
Agrawal, B., Gupta, N. and Konowalchuk, J.D. (2018) MUC1 Mucin: A Putative Regulatory (Checkpoint) Molecule of T Cells. FrontiersinImmunology, 9, Article 2391. https://doi.org/10.3389/fimmu.2018.02391
[11]
Yin, L., Li, Y., Ren, J., Kuwahara, H. and Kufe, D. (2003) Human MUC1 Carcinoma Antigen Regulates Intracellular Oxidant Levels and the Apoptotic Response to Oxidative Stress. JournalofBiologicalChemistry, 278, 35458-35464. https://doi.org/10.1074/jbc.m301987200
[12]
Nath, S. and Mukherjee, P. (2014) MUC1: A Multifaceted Oncoprotein with a Key Role in Cancer Progression. TrendsinMolecularMedicine, 20, 332-342. https://doi.org/10.1016/j.molmed.2014.02.007
[13]
Schroeder, J.A., Masri, A.A., Adriance, M.C., Tessier, J.C., Kotlarczyk, K.L., Thompson, M.C., et al. (2004) MUC1 Overexpression Results in Mammary Gland Tumorigenesis and Prolonged Alveolar Differentiation. Oncogene, 23, 5739-5747. https://doi.org/10.1038/sj.onc.1207713
[14]
Rakoff-Nahoum, S. (2006) Why Cancer and Inflammation? Yale Journal of Biology and Medicine, 79, 123-130.
[15]
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2014) STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. NucleicAcidsResearch, 43, D447-D452. https://doi.org/10.1093/nar/gku1003
[16]
Mendes, R.T., Nguyen, D., Stephens, D., Pamuk, F., Fernandes, D., Van Dyke, T.E., et al. (2016) Endothelial Cell Response to Fusobacterium nucleatum. InfectionandImmunity, 84, 2141-2148. https://doi.org/10.1128/iai.01305-15
[17]
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2016) KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. NucleicAcidsResearch, 45, D353-D361. https://doi.org/10.1093/nar/gkw1092
[18]
The Lancet Oncology, (2017) Colorectal Cancer: A Disease of the Young? TheLancetOncology, 18, 413. https://doi.org/10.1016/s1470-2045(17)30202-4
[19]
Dalton-Griffin, L. and Kellam, P. (2009) Infectious Causes of Cancer and Their Detection. JournalofBiology, 8, Article No. 67. https://doi.org/10.1186/jbiol168
[20]
zur Hausen, H. (2009) The Search for Infectious Causes of Human Cancers: Where and Why. Virology, 392, 1-10. https://doi.org/10.1016/j.virol.2009.06.001
[21]
Rubinstein, M.R., Wang, X., Liu, W., Hao, Y., Cai, G. and Han, Y.W. (2013) Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. CellHost&Microbe, 14, 195-206. https://doi.org/10.1016/j.chom.2013.07.012
[22]
Chen, Y., Peng, Y., Yu, J., Chen, T., Wu, Y., Shi, L., et al. (2017) Invasive Fusobacterium nucleatum Activates β-Catenin Signaling in Colorectal Cancer via a TLR4/P-PAK1 Cascade. Oncotarget, 8, 31802-31814. https://doi.org/10.18632/oncotarget.15992
[23]
Rubinstein, M.R., Baik, J.E., Lagana, S.M., Han, R.P., Raab, W.J., Sahoo, D., et al. (2019) Fusobacteriumnucleatum Promotes Colorectal Cancer by Inducing Wnt/β-Catenin Modulator Annexin A1. EMBOReports, 20, e47638. https://doi.org/10.15252/embr.201847638
[24]
Tilg, H., Adolph, T.E., Gerner, R.R. and Moschen, A.R. (2018) The Intestinal Microbiota in Colorectal Cancer. CancerCell, 33, 954-964. https://doi.org/10.1016/j.ccell.2018.03.004
[25]
Arthur, J.C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J.M., Fan, T., et al. (2012) Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science, 338, 120-123. https://doi.org/10.1126/science.1224820
[26]
Kulasingam, V. and Diamandis, E.P. (2008) Strategies for Discovering Novel Cancer Biomarkers through Utilization of Emerging Technologies. NatureClinicalPracticeOncology, 5, 588-599. https://doi.org/10.1038/ncponc1187
[27]
Bahrami, A., Khazaei, M., Hasanzadeh, M., ShahidSales, S., Joudi Mashhad, M., Farazestanian, M., et al. (2017) Therapeutic Potential of Targeting PI3K/AKT Pathway in Treatment of Colorectal Cancer: Rational and Progress. JournalofCellularBiochemistry, 119, 2460-2469. https://doi.org/10.1002/jcb.25950
[28]
Uddin, S., P.Bavi, P., Hussain, A.R., Alsbeih, G., Al-Sanea, N., AbdulJabbar, A., et al. (2009) Leptin Receptor Expression in Middle Eastern Colorectal Cancer and Its Potential Clinical Implication. Carcinogenesis, 30, 1832-1840. https://doi.org/10.1093/carcin/bgp145
[29]
Uddin, S., Hussain, A.R., Khan, O.S. and Al-Kuraya, K.S. (2013) Role of Dysregulated Expression of Leptin and Leptin Receptors in Colorectal Carcinogenesis. TumorBiology, 35, 871-879. https://doi.org/10.1007/s13277-013-1166-4
[30]
Tang, Y., Zhao, Y., Song, X., Song, X., Niu, L. and Xie, L. (2019) Tumor-Derived Exosomal miRNA-320d as a Biomarker for Metastatic Colorectal Cancer. JournalofClinicalLaboratoryAnalysis, 33, e23004. https://doi.org/10.1002/jcla.23004
[31]
Lau, S.K., Weiss, L.M. and Chu, P.G. (2004) Differential Expression of MUC1, MUC2, and MUC5AC in Carcinomas of Various Sites an Immunohistochemical Study. AmericanJournalofClinicalPathology, 122, 61-69. https://doi.org/10.1309/9r66-73qe-c06d-86y4
[32]
Sheng, Y.H., Triyana, S., Wang, R., Das, I., Gerloff, K., Florin, T.H., et al. (2013) MUC1 and MUC13 Differentially Regulate Epithelial Inflammation in Response to Inflammatory and Infectious Stimuli. MucosalImmunology, 6, 557-568. https://doi.org/10.1038/mi.2012.98
[33]
Dharmani, P., Strauss, J., Ambrose, C., Allen-Vercoe, E. and Chadee, K. (2011) Fusobacterium nucleatum Infection of Colonic Cells Stimulates MUC2 Mucin and Tumor Necrosis Factor α. InfectionandImmunity, 79, 2597-2607. https://doi.org/10.1128/iai.05118-11
[34]
Al-Khayal, K., Abdulla, M., Al-Obaid, O., Zubaidi, A., Vaali-Mohammed, M., Alsheikh, A., et al. (2016) Differential Expression of Mucins in Middle Eastern Patients with Colorectal Cancer. OncologyLetters, 12, 393-400. https://doi.org/10.3892/ol.2016.4672
[35]
Tian, S., Hu, J., Tao, K., Wang, J., Chu, Y., Li, J., et al. (2018) Secreted AGR2 Promotes Invasion of Colorectal Cancer Cells via Wnt11-Mediated Non-Canonical Wnt Signaling. ExperimentalCellResearch, 364, 198-207. https://doi.org/10.1016/j.yexcr.2018.02.004
[36]
Martisova, A., Sommerova, L., Kuricova, K., Podhorec, J., Vojtesek, B., Kankova, K., et al. (2019) AGR2 Silencing Contributes to Metformin-Dependent Sensitization of Colorectal Cancer Cells to Chemotherapy. OncologyLetters, 18, 4964-4973. https://doi.org/10.3892/ol.2019.10800
[37]
Zhang, J., Hu, S. and Li, Y. (2019) KRT18 Is Correlated with the Malignant Status and Acts as an Oncogene in Colorectal Cancer. BioscienceReports, 39, BSR20190884. https://doi.org/10.1042/bsr20190884
[38]
Huang, C. and Luo, H. (2018) miR-19-5p Enhances Tumorigenesis in Human Colorectal Cancer Cells by Targeting TSPYL5. DNAandCellBiology, 37, 23-30. https://doi.org/10.1089/dna.2017.3804
[39]
Ju, H., Lu, Y., Chen, D., Tian, T., Mo, H., Wei, X., et al. (2016) Redox Regulation of Stem-Like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications. Theranostics, 6, 1160-1175. https://doi.org/10.7150/thno.14848
[40]
Slattery, M.L., Lundgreen, A., Hines, L., Wolff, R.K., Torres-Mejia, G., Baumgartner, K.N., et al. (2015) Energy Homeostasis Genes and Breast Cancer Risk: The Influence of Ancestry, Body Size, and Menopausal Status, the Breast Cancer Health Disparities Study. CancerEpidemiology, 39, 1113-1122. https://doi.org/10.1016/j.canep.2015.08.012
[41]
Zhang, S., Cai, S. and Ma, Y. (2018) Association between Fusobacteriumnucleatum and Colorectal Cancer: Progress and Future Directions. JournalofCancer, 9, 1652-1659. https://doi.org/10.7150/jca.24048
[42]
Tjalsma, H., Boleij, A., Marchesi, J.R. and Dutilh, B.E. (2012) A Bacterial Driver-Passenger Model for Colorectal Cancer: Beyond the Usual Suspects. NatureReviewsMicrobiology, 10, 575-582. https://doi.org/10.1038/nrmicro2819
[43]
Kaplan, C.W., Lux, R., Haake, S.K. and Shi, W. (2008) The Fusobacteriumnucleatum Outer Membrane Protein Radd Is an Arginine-Inhibitable Adhesin Required for Inter-Species Adherence and the Structured Architecture of Multispecies Biofilm. MolecularMicrobiology, 71, 35-47. https://doi.org/10.1111/j.1365-2958.2008.06503.x
[44]
Jung, Y., Jun, H. and Choi, B. (2017) Porphyromonasgingivalis Suppresses Invasion of Fusobacteriumnucleatum into Gingival Epithelial Cells. JournalofOralMicrobiology, 9, Article ID: 1320193. https://doi.org/10.1080/20002297.2017.1320193