|
稀土金属复合材料应用于超级电容器的研究进展
|
Abstract:
超级电容器是一种潜在的储能装置,同时具备常规电容器高的功率密度与二次电池高的能量密度,可作为动力电池、燃料电池的助推器,为其提供高能量密度。以往的研究主要集中在碳材料、导电聚合物以及过渡金属氧化物/氢氧化物等方面,并且展现出的电化学性能较为可观。以稀土金属作为电极材料的超级电容器因其出色的电化学性能,得到了越来越多的重视。本文综述了稀土离子、稀土金属氧化物/氢氧化物、稀土硫族化物、稀土金属/金属氧化物复合材料在超级电容器中的应用。
Supercapacitors are a potential energy storage device that combines the high power density of conventional capacitor with the high energy density of secondary batteries. They can serve as boosters for power and fuel cells due to high energy density. Previous research has mainly focused on carbon materials, conductive polymers, and transition metal oxides/hydroxides due to considerable electrochemical performance. Rare earth metals as electrode materials of supercapacitors have received increasing attention due to their excellent electrochemical performance. This article reviews the applications of rare earth ions, rare earth metal oxides/hydroxides, rare earth chalcogenides, and rare earth metal/metal oxide composite materials for supercapacitors.
[1] | 余沛峰, 梁英, 王康旺, 等. 拓扑量子材料用于能源转化与存储的研究进展[J]. 材料研究与应用, 2023, 17(5): 886-901. |
[2] | 乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. |
[3] | Li, X. and Zhi, L. (2018) Graphene Hybridization for Energy Storage Applications. Chemical Society Reviews, 47, 3189-3216. https://doi.org/10.1039/c7cs00871f |
[4] | Sun, K., Hua, F., Cui, S., Zhu, Y., Peng, H. and Ma, G. (2021) An Asymmetric Supercapacitor Based on Controllable WO3 Nanorod Bundle and Alfalfa-Derived Porous Carbon. RSC Advances, 11, 37631-37642. https://doi.org/10.1039/d1ra04788d |
[5] | Zhang, Y., Pan, H., Zhou, Q., Liu, K., Ma, W. and Fan, S. (2023) Biomass-Derived Carbon for Supercapacitors Electrodes—A Review of Recent Advances. Inorganic Chemistry Communications, 153, Article 110768. https://doi.org/10.1016/j.inoche.2023.110768 |
[6] | 范瑞博, 陈亮, 薛北辰, 等. 生物质基工程生物炭材料应用于超级电容器: 现状、挑战及前景[J/OL]. 能源环境保护, 1-12. https://doi.org/10.20078/j.eep.20240308, 2024-08-25. |
[7] | Wang, Y., Wei, H., Lu, Y., Wei, S., Wujcik, E. and Guo, Z. (2015) Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Nanomaterials, 5, 755-777. https://doi.org/10.3390/nano5020755 |
[8] | Luo, B., Liu, S. and Zhi, L. (2011) Chemical Approaches toward Graphene-Based Nanomaterials and Their Applications in Energy-Related Areas. Small, 8, 630-646. https://doi.org/10.1002/smll.201101396 |
[9] | Meher, S.K., Justin, P. and Ranga Rao, G. (2011) Nanoscale Morphology Dependent Pseudocapacitance of NiO: Influence of Intercalating Anions during Synthesis. Nanoscale, 3, 683-692. https://doi.org/10.1039/c0nr00555j |
[10] | Balakrishnan, K., Kumar, M. and Angaiah, S. (2014) Synthesis of Polythiophene and Its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. Advanced Materials Research, 938, 151-157. https://doi.org/10.4028/www.scientific.net/amr.938.151 |
[11] | Zhang, L.L. and Zhao, X.S. (2009) Carbon-Based Materials as Supercapacitor Electrodes. Chemical Society Reviews, 38, 2520-2531. https://doi.org/10.1039/b813846j |
[12] | 张帅杰. 基于木纤维碳功能材料的超级电容器电化学性能研究[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2024. |
[13] | Chen, X., Paul, R. and Dai, L. (2017) Carbon-Based Supercapacitors for Efficient Energy Storage. National Science Review, 4, 453-489. https://doi.org/10.1093/nsr/nwx009 |
[14] | 高玉双, 段泉滨, 赵程, 等. 双电层材料下的柔性超级电容器电极分析[J]. 科技创新导报, 2019, 16(29): 76-77. |
[15] | 程锦. 超级电容器及其电极材料研究进展[J]. 电池工业, 2018, 22(5): 274-279. |
[16] | Frackowiak, E. (2007) Carbon Materials for Supercapacitor Application. Physical Chemistry Chemical Physics, 9, 1774-1785. https://doi.org/10.1039/b618139m |
[17] | 张哲. 镍基电极材料的制备及超级电容器性能研究[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2024. |
[18] | Sayyed, S.G., Mahadik, M.A., Shaikh, A.V., Jang, J.S. and Pathan, H.M. (2019) Nano-Metal Oxide Based Supercapacitor Via Electrochemical Deposition. ES Energy & Environment, 3, 25-44. https://doi.org/10.30919/esee8c211 |
[19] | 董韬文, 张伟, 郑伟涛. 赝电容的起源和本体相赝电容的实现[J]. 硅酸盐学报, 2024, 52(2): 442-453. |
[20] | Zhu, Q., Zhao, D., Cheng, M., Zhou, J., Owusu, K.A., Mai, L., et al. (2019) A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 9, Article 1901081. https://doi.org/10.1002/aenm.201901081 |
[21] | He, S., Guo, F., Yang, Q., Mi, H., Li, J., Yang, N., et al. (2021) Design and Fabrication of Hierarchical NiCoP-MOF Heterostructure with Enhanced Pseudocapacitive Properties. Small, 17, Article 2100353. https://doi.org/10.1002/smll.202100353 |
[22] | Wang, Q., Luo, Y., Hou, R., Zaman, S., Qi, K., Liu, H., et al. (2019) Redox Tuning in Crystalline and Electronic Structure of Bimetal-Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance. Advanced Materials, 31, Article 1905744. https://doi.org/10.1002/adma.201905744 |
[23] | Ye, J., Zhai, X., Chen, L., Guo, W., Gu, T., Shi, Y., et al. (2021) Oxygen Vacancies Enriched Nickel Cobalt Based Nanoflower Cathodes: Mechanism and Application of the Enhanced Energy Storage. Journal of Energy Chemistry, 62, 252-261. https://doi.org/10.1016/j.jechem.2021.03.030 |
[24] | 洪广言. 稀土化学导论[J]. 分析化学, 2014, 42(8): 1182. |
[25] | Han, D., Jing, X., Wang, J., Yang, P., Song, D. and Liu, J. (2012) Porous Lanthanum Doped NiO Microspheres for Supercapacitor Application. Journal of Electroanalytical Chemistry, 682, 37-44. https://doi.org/10.1016/j.jelechem.2012.06.016 |
[26] | Shao, G., Yao, Y., Zhang, S. and He, P. (2009) Supercapacitor Characteristic of La-Doped Ni(OH)2 Prepared by Electrode-Position. Rare Metals, 28, 132-136. https://doi.org/10.1007/s12598-009-0026-2 |
[27] | Chakrabarty, N., Char, M., Krishnamurthy, S. and Chakraborty, A.K. (2021) Influence of La3+ Induced Defects on MnO2-Carbon Nanotube Hybrid Electrodes for Supercapacitors. Materials Advances, 2, 366-375. https://doi.org/10.1039/d0ma00696c |
[28] | Zhang, Y., Zhang, G. and Du, T. (2011) Development of Potassium Ferrate(VI) Cathode Material Stabilized with Yttria Doped Zirconia Coating for Alkaline Super-Iron Battery. Electrochimica Acta, 56, 1159-1163. https://doi.org/10.1016/j.electacta.2010.10.027 |
[29] | Zhang, Y. and Zhai, Y. (2016) Preparation of Y-Doped ZrO2 Coatings on MnO2 Electrodes and Their Effect on Electrochemical Performance for MnO2 Electrochemical Supercapacitors. RSC Advances, 6, 1750-1759. https://doi.org/10.1039/c5ra20543c |
[30] | Arunachalam, S., Kirubasankar, B., Pan, D., Liu, H., Yan, C., Guo, Z., et al. (2020) Research Progress in Rare Earths and Their Composites Based Electrode Materials for Supercapacitors. Green Energy & Environment, 5, 259-273. https://doi.org/10.1016/j.gee.2020.07.021 |
[31] | Yadav, A.A., Lokhande, A.C., Kim, J.H. and Lokhande, C.D. (2016) Supercapacitive Activities of Porous La2O3 Symmetric Flexible Solid-State Device by Hydrothermal Method. International Journal of Hydrogen Energy, 41, 18311-18319. https://doi.org/10.1016/j.ijhydene.2016.08.028 |
[32] | Arunachalam, S., Kirubasankar, B., Murugadoss, V., Vellasamy, D. and Angaiah, S. (2018) Facile Synthesis of Electrostatically Anchored Nd(OH)3 Nanorods onto Graphene Nanosheets as a High Capacitance Electrode Material for Supercapacitors. New Journal of Chemistry, 42, 2923-2932. https://doi.org/10.1039/c7nj04335j |
[33] | Gong, Q., Li, Y., Huang, H., Zhang, J., Gao, T. and Zhou, G. (2018) Shape-Controlled Synthesis of Ni-CeO2@PANI Nanocomposites and Their Synergetic Effects on Supercapacitors. Chemical Engineering Journal, 344, 290-298. https://doi.org/10.1016/j.cej.2018.03.079 |
[34] | Maheswari, N. and Muralidharan, G. (2015) Supercapacitor Behavior of Cerium Oxide Nanoparticles in Neutral Aqueous Electrolytes. Energy & Fuels, 29, 8246-8253. https://doi.org/10.1021/acs.energyfuels.5b02144 |
[35] | Wang, H., Liang, M., Zhang, X., Duan, D., Shi, W., Song, Y., et al. (2018) Novel CeO2 Nanorod Framework Prepared by Dealloying for Supercapacitors Applications. Ionics, 24, 2063-2072. https://doi.org/10.1007/s11581-018-2443-4 |
[36] | Asaithambi, S., Sakthivel, P., Karuppaiah, M., Yuvakkumar, R., Balamurugan, K., Ahamad, T., et al. (2021) Preparation of Fe-SnO2@CeO2 Nanocomposite Electrode for Asymmetric Supercapacitor Device Performance Analysis. Journal of Energy Storage, 36, Article 102402. https://doi.org/10.1016/j.est.2021.102402 |
[37] | Wang, X., Yan, H., Zhang, J., Hong, X., Yang, S., Wang, C., et al. (2019) Stamen-Petal-Like CeO2/NiMn Layered Double Hydroxides Composite for High-Rate-Performance Supercapacitor. Journal of Alloys and Compounds, 810, Article 151911. https://doi.org/10.1016/j.jallcom.2019.151911 |
[38] | Mazloum-Ardakani, M., Sabaghian, F., Yavari, M., Ebady, A. and Sahraie, N. (2020) Enhance the Performance of Iron Oxide Nanoparticles in Supercapacitor Applications through Internal Contact of Α-Fe2O3@CeO2 Core-Shell. Journal of Alloys and Compounds, 819, Article 152949. https://doi.org/10.1016/j.jallcom.2019.152949 |
[39] | Paravannoor, A., Augustine, C.A. and Ponpandian, N. (2020) Rare Earth Nanostructures Based on Pro/CNT Composites as Potential Electrodes for an Asymmetric Pseudocapacitor Cell. Journal of Rare Earths, 38, 625-632. https://doi.org/10.1016/j.jre.2019.07.017 |
[40] | Subasri, A., Balakrishnan, K., Nagarajan, E.R., Devadoss, V. and Subramania, A. (2018) Development of 2D La(OH)3 /Graphene Nanohybrid by a Facile Solvothermal Reduction Process for High-Performance Supercapacitors. Electrochimica Acta, 281, 329-337. https://doi.org/10.1016/j.electacta.2018.05.142 |
[41] | Wang, Y., Guo, C.X., Liu, J., Chen, T., Yang, H. and Li, C.M. (2011) CeO2 Nanoparticles/Graphene Nanocomposite-Based High Performance Supercapacitor. Dalton Transactions, 40, 6388-6391. https://doi.org/10.1039/c1dt10397k |
[42] | Luo, Y., Yang, T., Zhao, Q. and Zhang, M. (2017) CeO2/CNTs Hybrid with High Performance as Electrode Materials for Supercapacitor. Journal of Alloys and Compounds, 729, 64-70. https://doi.org/10.1016/j.jallcom.2017.09.165 |
[43] | Dezfuli, A.S., Ganjali, M.R., Naderi, H.R. and Norouzi, P. (2015) A High Performance Supercapacitor Based on a Ceria/Graphene Nanocomposite Synthesized by a Facile Sonochemical Method. RSC Advances, 5, 46050-46058. https://doi.org/10.1039/c5ra02957k |
[44] | Aravinda, L.S., Udaya Bhat, K. and Ramachandra Bhat, B. (2013) Nano CeO2/Activated Carbon Based Composite Electrodes for High Performance Supercapacitor. Materials Letters, 112, 158-161. https://doi.org/10.1016/j.matlet.2013.09.009 |
[45] | Padmanathan, N. and Selladurai, S. (2014) Shape Controlled Synthesis of CeO2 Nanostructures for High Performance Supercapacitor Electrodes. RSC Advances, 4, 6527-6534. https://doi.org/10.1039/c3ra43339k |
[46] | Ji, Z., Shen, X., Zhou, H. and Chen, K. (2015) Facile Synthesis of Reduced Graphene Oxide/CeO2 Nanocomposites and Their Application in Supercapacitors. Ceramics International, 41, 8710-8716. https://doi.org/10.1016/j.ceramint.2015.03.089 |
[47] | Deng, D., Chen, N., Xiao, X., Du, S. and Wang, Y. (2016) Electrochemical Performance of CeO2 Nanoparticle-Decorated Graphene Oxide as an Electrode Material for Supercapacitor. Ionics, 23, 121-129. https://doi.org/10.1007/s11581-016-1812-0 |
[48] | Naderi, H.R., Ganjali, M.R. and Dezfuli, A.S. (2017) High-Performance Supercapacitor Based on Reduced Graphene Oxide Decorated with Europium Oxide Nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 3035-3044. https://doi.org/10.1007/s10854-017-8234-2 |
[49] | Patil, S.J., Kumbhar, V.S., Patil, B.H., Bulakhe, R.N. and Lokhande, C.D. (2014) Chemical Synthesis of Α-La2S3 Thin Film as an Advanced Electrode Material for Supercapacitor Application. Journal of Alloys and Compounds, 611, 191-196. https://doi.org/10.1016/j.jallcom.2014.04.203 |
[50] | Kumbhar, V.S., Lokhande, A.C., Gaikwad, N.S. and Lokhande, C.D. (2015) Facile Synthesis of Sm2S3 Diffused Nanoflakes and Their Pseudocapactive Behavior. Ceramics International, 41, 5758-5764. https://doi.org/10.1016/j.ceramint.2015.01.004 |
[51] | Bibi, N., Xia, Y., Ahmed, S., Zhu, Y., Zhang, S. and Iqbal, A. (2018) Highly Stable Mesoporous CeO2/CeS2 Nanocomposite as Electrode Material with Improved Supercapacitor Electrochemical Performance. Ceramics International, 44, 22262-22270. https://doi.org/10.1016/j.ceramint.2018.08.348 |