全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于白鲸优化算法优化超限学习机的燃料电池剩余使用寿命预测方法
Fuel Cell Remaining Useful Life Prediction Method Based on Beluga Whale Optimization Algorithm for Optimizing Extreme Learning Machine

DOI: 10.12677/airr.2024.134074, PP. 732-739

Keywords: 质子交换膜燃料电池,寿命预测,白鲸优化算法,极限学习机
Proton-Exchange Membrane Fuel Cells
, Life Prediction, Beluga Whale Optimization, Extreme Learning Machine

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对质子交换膜燃料电池(proton-exchange membrane fuel cells, PEMFC)剩余使用寿命的预测问题,本文提出了一种基于白鲸优化算法(beluga whale optimization, BWO)优化极限学习机(extreme learning machine, ELM)的预测方法。该方法首先应用局部加权回归散点平滑法进行数据重构和平滑,以保留原始数据的主要趋势,同时有效去除噪声和尖峰。然后,通过相关性分析探讨电压与其他参数之间的关系。最后,利用BWO优化算法优化ELM模型的参数,以获取最优参数,从而实现PEMFC剩余使用寿命的精准预测。结果表明,该方法的决定系数接近于1,平均绝对百分比误差最小可达到2.7309e?10,显示了该方法在剩余使用寿命预测方面的优良准确性。
For the prediction problem of the remaining useful life of proton-exchange membrane fuel cells (PEMFCs), this paper proposes a prediction method based on beluga whale optimization (BWO) optimized extreme learning machine (ELM). The method first applies a locally weighted regression scatter smoothing method for data reconstruction and smoothing to retain the main trends of the original data while effectively removing noise and spikes. Then, the relationship between voltage and other parameters is explored through correlation analysis. Finally, the parameters of the ELM model are optimized using the BWO optimization algorithm to obtain the optimal parameters for accurate prediction of the remaining useful life of the PEMFC. The results show that the coefficient of determination of the method is close to 1, and the mean average percentage error can be minimized to 2.7309e?10, which demonstrates the excellent accuracy of the method in remaining useful life prediction.

References

[1]  李奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报, 2019, 39(8): 2365-2375.
[2]  Hua, Z., Zheng, Z., Pahon, E., Péra, M. and Gao, F. (2022) A Review on Lifetime Prediction of Proton Exchange Membrane Fuel Cells System. Journal of Power Sources, 529, Article ID: 231256.
https://doi.org/10.1016/j.jpowsour.2022.231256
[3]  Hua, Z., Zheng, Z., Pahon, E., Péra, M. and Gao, F. (2021) Remaining Useful Life Prediction of PEMFC Systems under Dynamic Operating Conditions. Energy Conversion and Management, 231, Article ID: 113825.
https://doi.org/10.1016/j.enconman.2021.113825
[4]  Liu, J., Li, Q., Chen, W., Yan, Y., Qiu, Y. and Cao, T. (2019) Remaining Useful Life Prediction of PEMFC Based on Long Short-Term Memory Recurrent Neural Networks. International Journal of Hydrogen Energy, 44, 5470-5480.
https://doi.org/10.1016/j.ijhydene.2018.10.042
[5]  Tang, A., Yang, Y., Yu, Q., Zhang, Z. and Yang, L. (2022) A Review of Life Prediction Methods for PEMFCs in Electric Vehicles. Sustainability, 14, Article No. 9842.
https://doi.org/10.3390/su14169842
[6]  刘嘉蔚, 李奇, 陈维荣, 等. 基于核超限学习机和局部加权回归散点平滑法的PEMFC剩余使用寿命预测方法[J]. 中国电机工程学报, 2019, 39(24): 7272-7279.
[7]  Zhang, X., Yu, Z. and Chen, W. (2019) Life Prediction Based on D-S ELM for PEMFC. Energies, 12, Article No. 3752.
https://doi.org/10.3390/en12193752
[8]  Deng, Z., Chan, S.H., Chen, Q., Liu, H., Zhang, L., Zhou, K., et al. (2023) Efficient Degradation Prediction of PEMFCs Using ELM-AE Based on Fuzzy Extension Broad Learning System. Applied Energy, 331, Article ID: 120385.
https://doi.org/10.1016/j.apenergy.2022.120385
[9]  Xie, Y., Zou, J., Li, Z., Gao, F. and Peng, C. (2020) A Novel Deep Belief Network and Extreme Learning Machine Based Performance Degradation Prediction Method for Proton Exchange Membrane Fuel Cell. IEEE Access, 8, 176661-176675.
https://doi.org/10.1109/access.2020.3026487
[10]  华志广, 潘诗媛, 赵冬冬, 等. 基于分解优化并行ESN的氢燃料电池寿命预测[J/OL]. 航空学报, 2024: 1-13.
http://kns.cnki.net/kcms/detail/11.1929.V.20240820.1012.020.html, 2024-09-10.
[11]  Chen, K., Laghrouche, S. and Djerdir, A. (2020) Proton Exchange Membrane Fuel Cell Prognostics Using Genetic Algorithm and Extreme Learning Machine. Fuel Cells, 20, 263-271.
https://doi.org/10.1002/fuce.201900085
[12]  Zhong, C., Li, G. and Meng, Z. (2022) Beluga Whale Optimization: A Novel Nature-Inspired Metaheuristic Algorithm. Knowledge-Based Systems, 251, Article ID: 109215.
https://doi.org/10.1016/j.knosys.2022.109215

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133