全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

免疫原性微核在肿瘤中的发病机制及研究进展
The Pathogenesis and Research Progress of Immunogenic Micronuclei in Tumors

DOI: 10.12677/acm.2024.14102829, PP. 1539-1546

Keywords: 微核,微核被膜,cGAS-STING通路,免疫原性微核,肿瘤
Micronuclei
, Micronuclei Envelope, cGAS-STING Pathway, Immunogenic Micronuclei, Tumor

Full-Text   Cite this paper   Add to My Lib

Abstract:

在过去的几年中,基因组测序技术的进步已经揭示,由于持续的基因组不稳定性,患者的癌症基因组在患者之间以及个体肿瘤内都是高度异质性的。除了是肿瘤基因组异质性的关键来源之外,染色体错误分离还可能导致基因组物质在有丝分裂后被排除在初级核之外,并被封装到细胞质中的较小核小体中,称为微核(micronuclei, MN)。大量研究显示,具有免疫原性的MN介导了炎症反应、抗肿瘤作用和促癌症转移等下游途径,暗示免疫原性微核(immunogenic micronuclei, iMN)具有广泛的生物医学意义。迄今为止,还没有广泛的综述可以综合研究iMN在肿瘤中的发病机制及研究进展。在这篇综述中,我们旨在总结近年来iMN在分子起源和细胞对iMN的反应方面的进展。我们将首先讨论MN形成的多种分子机制,然后概述iMN与癌症之间的关联,并以新兴的研究课题和挑战结束。本综述将全面了解免疫原性微核在肿瘤中的发病机制及研究进展。
In the past few years, the advancement of genomic sequencing technology has revealed that the cancer genomes of patients are highly heterogeneous between patients as well as within individual tumors due to ongoing genomic instability. In addition to being a key source of tumor genomic heterogeneity, chromosomal missegregation can also result in the exclusion of genomic material from the primary nucleus after mitosis and its encapsulation in smaller nucleosomes in the cytoplasm, known as micronuclei (MN). A large number of studies have shown that immunogenic MN mediates downstream pathways, such as inflammatory responses, antitumor effects, and promotion of cancer metastasis, suggesting that immunogenic micronuclei (iMN) have widespread biomedical significance. To date, there has been no comprehensive review that summarizes the pathogenesis and research progress of iMN in tumors. In this review, we aim to summarize recent advances in molecular origins and cellular responses to iMN. We will first discuss the various molecular mechanisms of MN formation, and then outline the association between iMN and cancer, concluding with emerging research topics and challenges. This review will provide a comprehensive understanding of the pathogenesis and research progress of immunogenic micronuclei in tumors.

References

[1]  Hatch, E.M., Fischer, A.H., Deerinck, T.J. and Hetzer, M.W. (2013) Catastrophic Nuclear Envelope Collapse in Cancer Cell Micronuclei. Cell, 154, 47-60.
https://doi.org/10.1016/j.cell.2013.06.007
[2]  张城, 汪旭, 郭锡汉. 免疫原性微核的起源与生物医学意义[J]. 生命科学, 2022, 34(4): 392-400.
[3]  Guo, X., Ni, J., Liang, Z., Xue, J., Fenech, M.F. and Wang, X. (2019) The Molecular Origins and Pathophysiological Consequences of Micronuclei: New Insights into an Age-Old Problem. Mutation Research/Reviews in Mutation Research, 779, 1-35.
https://doi.org/10.1016/j.mrrev.2018.11.001
[4]  Krupina, K., Goginashvili, A. and Cleveland, D.W. (2021) Causes and Consequences of Micronuclei. Current Opinion in Cell Biology, 70, 91-99.
https://doi.org/10.1016/j.ceb.2021.01.004
[5]  Fonseca, C.L., Malaby, H.L.H., Sepaniac, L.A., Martin, W., Byers, C., Czechanski, A., et al. (2019) Mitotic Chromosome Alignment Ensures Mitotic Fidelity by Promoting Interchromosomal Compaction during Anaphase. Journal of Cell Biology, 218, 1148-1163.
https://doi.org/10.1083/jcb.201807228
[6]  Bonacci, T. and Emanuele, M.J. (2019) Impressionist Portraits of Mitotic Exit: APC/C, K11-Linked Ubiquitin Chains and Cezanne. Cell Cycle, 18, 652-660.
https://doi.org/10.1080/15384101.2019.1593646
[7]  Hämälistö, S., Stahl, J.L., Favaro, E., Yang, Q., Liu, B., Christoffersen, L., et al. (2020) Spatially and Temporally Defined Lysosomal Leakage Facilitates Mitotic Chromosome Segregation. Nature Communications, 11, Article No. 229.
https://doi.org/10.1038/s41467-019-14009-0
[8]  Almacellas, E., Pelletier, J., Day, C., Ambrosio, S., Tauler, A. and Mauvezin, C. (2020) Lysosomal Degradation Ensures Accurate Chromosomal Segregation to Prevent Chromosomal Instability. Autophagy, 17, 796-813.
https://doi.org/10.1080/15548627.2020.1764727
[9]  Mackenzie, K.J., Carroll, P., Martin, C., Murina, O., Fluteau, A., Simpson, D.J., et al. (2017) cGAS Surveillance of Micronuclei Links Genome Instability to Innate Immunity. Nature, 548, 461-465.
https://doi.org/10.1038/nature23449
[10]  Bartsch, K., Knittler, K., Borowski, C., Rudnik, S., Damme, M., Aden, K., et al. (2017) Absence of RNase H2 Triggers Generation of Immunogenic Micronuclei Removed by Autophagy. Human Molecular Genetics, 26, 3960-3972.
https://doi.org/10.1093/hmg/ddx283
[11]  McNairn, A.J., Chuang, C., Bloom, J.C., Wallace, M.D. and Schimenti, J.C. (2019) Female-Biased Embryonic Death from Inflammation Induced by Genomic Instability. Nature, 567, 105-108.
https://doi.org/10.1038/s41586-019-0936-6
[12]  Leimbacher, P., Jones, S.E., Shorrocks, A.K., de Marco Zompit, M., Day, M., Blaauwendraad, J., et al. (2019) MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Molecular Cell, 74, 571-583.E8.
https://doi.org/10.1016/j.molcel.2019.02.014
[13]  Bailey, L.J., Bianchi, J. and Doherty, A.J. (2019) PrimPol Is Required for the Maintenance of Efficient Nuclear and Mitochondrial DNA Replication in Human Cells. Nucleic Acids Research, 47, 4026-4038.
https://doi.org/10.1093/nar/gkz056
[14]  Pladevall-Morera, D., Munk, S., Ingham, A., Garribba, L., Albers, E., Liu, Y., et al. (2019) Proteomic Characterization of Chromosomal Common Fragile Site (CFS)-Associated Proteins Uncovers ATRX as a Regulator of CFS Stability. Nucleic Acids Research, 47, 8004-8018.
https://doi.org/10.1093/nar/gkz510
[15]  Heijink, A.M., Talens, F., Jae, L.T., van Gijn, S.E., Fehrmann, R.S.N., Brummelkamp, T.R., et al. (2019) BRCA2 Deficiency Instigates cGAS-Mediated Inflammatory Signaling and Confers Sensitivity to Tumor Necrosis Factor-Alpha-Mediated Cytotoxicity. Nature Communications, 10, Article No. 100.
https://doi.org/10.1038/s41467-018-07927-y
[16]  De Magis, A., Manzo, S.G., Russo, M., Marinello, J., Morigi, R., Sordet, O., et al. (2018) DNA Damage and Genome Instability by G-Quadruplex Ligands Are Mediated by R Loops in Human Cancer Cells. Proceedings of the National Academy of Sciences, 116, 816-825.
https://doi.org/10.1073/pnas.1810409116
[17]  Rossi, F., Helbling‐Leclerc, A., Kawasumi, R., Jegadesan, N.K., Xu, X., Devulder, P., et al. (2019) SMC5/6 Acts Jointly with Fanconi Anemia Factors to Support DNA Repair and Genome Stability. EMBO Reports, 21, e48222.
https://doi.org/10.15252/embr.201948222
[18]  Gratia, M., Rodero, M.P., Conrad, C., Bou Samra, E., Maurin, M., Rice, G.I., et al. (2019) Bloom Syndrome Protein Restrains Innate Immune Sensing of Micronuclei by cGAS. Journal of Experimental Medicine, 216, 1199-1213.
https://doi.org/10.1084/jem.20181329
[19]  Traynor, S., Møllegaard, N.E., Jørgensen, M.G., Brückmann, N.H., Pedersen, C.B., Terp, M.G., et al. (2019) Remodeling and Destabilization of Chromosome 1 Pericentromeric Heterochromatin by SSX Proteins. Nucleic Acids Research, 47, 6668-6684.
https://doi.org/10.1093/nar/gkz396
[20]  Zhang, W., Chen, Z., Zhang, D., Zhao, B., Liu, L., Xie, Z., et al. (2019) KHDC3L Mutation Causes Recurrent Pregnancy Loss by Inducing Genomic Instability of Human Early Embryonic Cells. PLOS Biology, 17, e3000468.
https://doi.org/10.1371/journal.pbio.3000468
[21]  Umbreit, N.T., Zhang, C., Lynch, L.D., Blaine, L.J., Cheng, A.M., Tourdot, R., et al. (2020) Mechanisms Generating Cancer Genome Complexity from a Single Cell Division Error. Science, 368, eaba0712.
https://doi.org/10.1126/science.aba0712
[22]  Shoshani, O., Brunner, S.F., Yaeger, R., Ly, P., Nechemia-Arbely, Y., Kim, D.H., et al. (2020) Chromothripsis Drives the Evolution of Gene Amplification in Cancer. Nature, 591, 137-141.
https://doi.org/10.1038/s41586-020-03064-z
[23]  Liu, S. and Pellman, D. (2020) The Coordination of Nuclear Envelope Assembly and Chromosome Segregation in Metazoans. Nucleus, 11, 35-52.
https://doi.org/10.1080/19491034.2020.1742064
[24]  Maiato, H., Afonso, O. and Matos, I. (2014) A Chromosome Separation Checkpoint: A Midzone Aurora B Gradient Mediates a Chromosome Separation Checkpoint That Regulates the Anaphase-Telophase Transition. BioEssays, 37, 257-266.
https://doi.org/10.1002/bies.201400140
[25]  Liu, S., Kwon, M., Mannino, M., Yang, N., Renda, F., Khodjakov, A., et al. (2018) Nuclear Envelope Assembly Defects Link Mitotic Errors to Chromothripsis. Nature, 561, 551-555.
https://doi.org/10.1038/s41586-018-0534-z
[26]  Lammerding, J., Fong, L.G., Ji, J.Y., Reue, K., Stewart, C.L., Young, S.G., et al. (2006) Lamins A and C but Not Lamin B1 Regulate Nuclear Mechanics. Journal of Biological Chemistry, 281, 25768-25780.
https://doi.org/10.1074/jbc.m513511200
[27]  Chen, C., Chi, Y., Mutalif, R.A., Starost, M.F., Myers, T.G., Anderson, S.A., et al. (2012) Accumulation of the Inner Nuclear Envelope Protein Sun1 Is Pathogenic in Progeric and Dystrophic Laminopathies. Cell, 149, 565-577.
https://doi.org/10.1016/j.cell.2012.01.059
[28]  Hatch, E.M. and Hetzer, M.W. (2016) Nuclear Envelope Rupture Is Induced by Actin-Based Nucleus Confinement. Journal of Cell Biology, 215, 27-36.
https://doi.org/10.1083/jcb.201603053
[29]  Mammel, A.E., Huang, H.Z., Gunn, A.L., Choo, E. and Hatch, E.M. (2021) Chromosome Length and Gene Density Contribute to Micronuclear Membrane Stability. Life Science Alliance, 5, e202101210.
https://doi.org/10.26508/lsa.202101210
[30]  Maass, K.K., Rosing, F., Ronchi, P., Willmund, K.V., Devens, F., Hergt, M., et al. (2018) Altered Nuclear Envelope Structure and Proteasome Function of Micronuclei. Experimental Cell Research, 371, 353-363.
https://doi.org/10.1016/j.yexcr.2018.08.029
[31]  Terradas, M., Martín, M., Hernández, L., Tusell, L. and Genescà, A. (2012) Nuclear Envelope Defects Impede a Proper Response to Micronuclear DNA Lesions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 729, 35-40.
https://doi.org/10.1016/j.mrfmmm.2011.09.003
[32]  Vietri, M., Schultz, S.W., Bellanger, A., Jones, C.M., Petersen, L.I., Raiborg, C., et al. (2020) Unrestrained ESCRT-III Drives Micronuclear Catastrophe and Chromosome Fragmentation. Nature Cell Biology, 22, 856-867.
https://doi.org/10.1038/s41556-020-0537-5
[33]  Zhang, C., Spektor, A., Cornils, H., Francis, J.M., Jackson, E.K., Liu, S., et al. (2015) Chromothripsis from DNA Damage in Micronuclei. Nature, 522, 179-184.
https://doi.org/10.1038/nature14493
[34]  Crasta, K., Ganem, N.J., Dagher, R., Lantermann, A.B., Ivanova, E.V., Pan, Y., et al. (2012) DNA Breaks and Chromosome Pulverization from Errors in Mitosis. Nature, 482, 53-58.
https://doi.org/10.1038/nature10802
[35]  Ly, P., Teitz, L.S., Kim, D.H., Shoshani, O., Skaletsky, H., Fachinetti, D., et al. (2016) Selective Y Centromere Inactivation Triggers Chromosome Shattering in Micronuclei and Repair by Non-Homologous End Joining. Nature Cell Biology, 19, 68-75.
https://doi.org/10.1038/ncb3450
[36]  Wang, Y., Wang, M., Djekidel, M.N., Chen, H., Liu, D., Alt, F.W., et al. (2021) eccDNAs Are Apoptotic Products with High Innate Immunostimulatory Activity. Nature, 599, 308-314.
https://doi.org/10.1038/s41586-021-04009-w
[37]  Chen, Q., Sun, L. and Chen, Z.J. (2016) Regulation and Function of the cGAS-STING Pathway of Cytosolic DNA Sensing. Nature Immunology, 17, 1142-1149.
https://doi.org/10.1038/ni.3558
[38]  Briard, B., Place, D.E. and Kanneganti, T. (2020) DNA Sensing in the Innate Immune Response. Physiology, 35, 112-124.
https://doi.org/10.1152/physiol.00022.2019
[39]  Abe, T. and Barber, G.N. (2014) Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF-κB Activation through TBK1. Journal of Virology, 88, 5328-5341.
https://doi.org/10.1128/jvi.00037-14
[40]  Mackenzie, K.J., Carroll, P., Martin, C., Murina, O., Fluteau, A., Simpson, D.J., et al. (2017) cGAS Surveillance of Micronuclei Links Genome Instability to Innate Immunity. Nature, 548, 461-465.
https://doi.org/10.1038/nature23449
[41]  Harding, S.M., Benci, J.L., Irianto, J., Discher, D.E., Minn, A.J. and Greenberg, R.A. (2017) Mitotic Progression Following DNA Damage Enables Pattern Recognition within Micronuclei. Nature, 548, 466-470.
https://doi.org/10.1038/nature23470
[42]  Ku, J.W.K., Chen, Y., Lim, B.J.W., Gasser, S., Crasta, K.C. and Gan, Y. (2020) Bacterial-Induced Cell Fusion Is a Danger Signal Triggering cGAS-STING Pathway via Micronuclei Formation. Proceedings of the National Academy of Sciences, 117, 15923-15934.
https://doi.org/10.1073/pnas.2006908117
[43]  Lohard, S., Bourgeois, N., Maillet, L., Gautier, F., Fétiveau, A., Lasla, H., et al. (2020) STING-Dependent Paracriny Shapes Apoptotic Priming of Breast Tumors in Response to Anti-Mitotic Treatment. Nature Communications, 11, Article No. 259.
https://doi.org/10.1038/s41467-019-13689-y
[44]  Bakhoum, S.F., Ngo, B., Laughney, A.M., Cavallo, J., Murphy, C.J., Ly, P., et al. (2018) Chromosomal Instability Drives Metastasis through a Cytosolic DNA Response. Nature, 553, 467-472.
https://doi.org/10.1038/nature25432
[45]  Liu, H., Zhang, H., Wu, X., Ma, D., Wu, J., Wang, L., et al. (2018) Nuclear cGAS Suppresses DNA Repair and Promotes Tumorigenesis. Nature, 563, 131-136.
https://doi.org/10.1038/s41586-018-0629-6
[46]  Watkins, T.B.K., Lim, E.L., Petkovic, M., Elizalde, S., Birkbak, N.J., Wilson, G.A., et al. (2020) Pervasive Chromosomal Instability and Karyotype Order in Tumour Evolution. Nature, 587, 126-132.
https://doi.org/10.1038/s41586-020-2698-6
[47]  Tijhuis, A.E., Johnson, S.C. and McClelland, S.E. (2019) The Emerging Links between Chromosomal Instability (CIN), Metastasis, Inflammation and Tumour Immunity. Molecular Cytogenetics, 12, Article No. 17.
https://doi.org/10.1186/s13039-019-0429-1
[48]  Liang, H., Deng, L., Hou, Y., Meng, X., Huang, X., Rao, E., et al. (2017) Host STING-Dependent MDSC Mobilization Drives Extrinsic Radiation Resistance. Nature Communications, 8, Article No. 1736.
https://doi.org/10.1038/s41467-017-01566-5
[49]  Coussens, L.M. and Werb, Z. (2002) Inflammation and Cancer. Nature, 420, 860-867.
https://doi.org/10.1038/nature01322
[50]  Terai, H., Kitajima, S., Potter, D.S., Matsui, Y., Quiceno, L.G., Chen, T., et al. (2018) ER Stress Signaling Promotes the Survival of Cancer “Persister Cells” Tolerant to EGFR Tyrosine Kinase Inhibitors. Cancer Research, 78, 1044-1057.
https://doi.org/10.1158/0008-5472.can-17-1904
[51]  Guscott, M., Saha, A., Maharaj, J. and McClelland, S.E. (2022) The Multifaceted Role of Micronuclei in Tumour Progression: A Whole Organism Perspective. The International Journal of Biochemistry & Cell Biology, 152, Article ID: 106300.
https://doi.org/10.1016/j.biocel.2022.106300
[52]  Mittal, V. (2018) Epithelial Mesenchymal Transition in Tumor Metastasis. Annual Review of Pathology: Mechanisms of Disease, 13, 395-412.
https://doi.org/10.1146/annurev-pathol-020117-043854
[53]  Sepaniac, L.A., Martin, W., Dionne, L.A., Stearns, T.M., Reinholdt, L.G. and Stumpff, J. (2021) Micronuclei in Kif18a Mutant Mice Form Stable Micronuclear Envelopes and Do Not Promote Tumorigenesis. Journal of Cell Biology, 220, e202101165.
https://doi.org/10.1083/jcb.202101165

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133