全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于双硫死亡相关lncRNA的骨肉瘤预后模型构建及验证
Construction and Validation of a Prognostic Model for Osteosarcoma Based on Disulfide Death Related lncRNA

DOI: 10.12677/acm.2024.14102823, PP. 1485-1498

Keywords: 双硫死亡,骨肉瘤,lncRNAs,qRT-PCR,增殖,预后
Double Sulfur Death
, Osteosarcoma, lncRNAs, qRT-PCR, Proliferation, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探索双硫死亡相关lncRNAs (DRLs)在骨肉瘤(Osteosarcoma, OS)患者中的预后价值。方法:从TCGA数据库中提取OS患者的基因表达和相关临床数据,筛选预后相关DRLs基因,构建预后模型并进行验证。qRT-PCR分析检测相关DRLs在细胞及组织中的表达。CCK-8实验检测si-ASB16.AS1对MG-63细胞增殖能力的影响。采用Kaplan-Meier法绘制生存曲线,Cox回归用于分析影响骨肉瘤患者预后的因素。结果:筛选出6个预后相关DRLs (RP11.304F15.6、RP11.750H9.5、RP11.313F23.4、RP11.46C2.47、ASB16.AS1和RP11.452C13.1)用于构建预后模型。ROC分析表明,该模型具有较强的预测能力。qRT-PCR分析表明6个DRLs在OS细胞系中表达上调,si-ASB16.AS1可抑制MG-63细胞增殖。并且,ASB16.AS1在OS患者癌组织中的表达也是上调的,ASB16.AS1高表达的OS患者总体生存时间显著短于低表达患者,ASB16.AS1是OS患者一个独立的预后生物标志物。结论:本研究确定了6个DRLs作为OS预后的标志,构建了一个有价值的OS预后模型;并发现ASB16.AS1可参与OS细胞的增殖,是OS患者一个独立的预后生物标志物。
Objective: To explore the prognostic value of disulfide death related lncRNAs (DRLs) in patients with osteosarcoma (OS). Methods: The gene expression and related clinical data of OS patients were extracted from TCGA database, and prognostic related DRLs genes were screened to construct a prognostic model. The expression of related DRLs in cells and tissues was detected by qRT-PCR. The effect of si-ASB16.AS1 on the proliferation of MG-63 cells was detected by CCK-8 assay. Kaplan-Meier method was used to draw the survival curve, and Cox regression was used to analyze the factors affecting the prognosis of patients with OS. Results: Six prognostic related DRLs (RP11.304F15.6, RP11.750H9.5, RP11.313F23.4, RP11.46C2.47, ASB16.AS1, and RP11.452C13.1) were selected for constructing a prognostic model. ROC analysis showed that the model had a strong predictive ability. qRT-PCR analysis showed that the expression of six DRLs was up-regulated in OS cell lines, and si-ASB16.AS1 inhibited the proliferation of MG-63 cells. The overall survival time of OS patients with high ASB16.AS1 expression is significantly shorter than that of patients with low ASB16.AS1 expression. Conclusion: 6 DRLs were identified as prognostic markers of OS, and a valuable prognostic model of OS was constructed. It was found that ASB16.AS1 can participate in the proliferation of OS cells and is an independent prognostic biomarker in patients with OS.

References

[1]  Lin, H., Wu, T., Peng, L., Su, W., Wang, Y., Li, X., et al. (2020) Lnc-MAP6-1:3 Knockdown Inhibits Osteosarcoma Progression by Modulating Bax/Bcl-2 and Wnt/β-Catenin Pathways. International Journal of Medical Sciences, 17, 2248-2256.
https://doi.org/10.7150/ijms.47405
[2]  Shoaib, Z., Fan, T.M. and Irudayaraj, J.M.K. (2021) Osteosarcoma Mechanobiology and Therapeutic Targets. British Journal of Pharmacology, 179, 201-217.
https://doi.org/10.1111/bph.15713
[3]  Lin, H., Wei, X., Ye, J., Chen, J., Huang, J., Wu, T., et al. (2024) Lnc-CLSTN2-1: 1 Promotes Osteosarcoma Progression by Disrupting Redox Balance through PI3K/AKT Signaling Pathway. Journal of Cancer, 15, 1287-1298.
https://doi.org/10.7150/jca.91579
[4]  Zhou, H., Sun, L. and Wan, F. (2019) Molecular Mechanisms of TUG1 in the Proliferation, Apoptosis, Migration and Invasion of Cancer Cells (Review). Oncology Letters, 18, 4393-4402.
https://doi.org/10.3892/ol.2019.10848
[5]  Shirvaliloo, M. (2023) Lncrna H19 Promotes Tumor Angiogenesis in Smokers by Targeting Anti-Angiogenic Mirnas. Epigenomics, 15, 61-73.
https://doi.org/10.2217/epi-2022-0145
[6]  Wan, N., Liu, Q., Shi, J. and Wang, S. (2024) LncRNA SNHG25 Predicts Poor Prognosis and Promotes Progression in Osteosarcoma via the miR-497-5p/SOX4 Axis. Combinatorial Chemistry & High Throughput Screening, 27, 725-744.
https://doi.org/10.2174/1386207326666230602122618
[7]  Zhao, A., Liu, W., Cui, X., Wang, N., Wang, Y., Sun, L., et al. (2020) LncRNA TUSC7 Inhibits Osteosarcoma Progression through the miR-181a/RASSF6 Axis. International Journal of Molecular Medicine, 47, 583-594.
https://doi.org/10.3892/ijmm.2020.4825
[8]  Meng, Y., Chen, X. and Deng, G. (2023) Disulfidptosis: A New Form of Regulated Cell Death for Cancer Treatment. Molecular Biomedicine, 4, Article No. 18.
https://doi.org/10.1186/s43556-023-00132-4
[9]  Feng, Z., Zhao, Q., Ding, Y., Xu, Y., Sun, X., Chen, Q., et al. (2023) Identification a Unique Disulfidptosis Classification Regarding Prognosis and Immune Landscapes in Thyroid Carcinoma and Providing Therapeutic Strategies. Journal of Cancer Research and Clinical Oncology, 149, 11157-11170.
https://doi.org/10.1007/s00432-023-05006-4
[10]  Wang, T., Guo, K., Zhang, D., Wang, H., Yin, J., Cui, H., et al. (2023) Disulfidptosis Classification of Hepatocellular Carcinoma Reveals Correlation with Clinical Prognosis and Immune Profile. International Immunopharmacology, 120, Article ID: 110368.
https://doi.org/10.1016/j.intimp.2023.110368
[11]  Liu, F., Yuan, D., Liu, X., Zhuo, S., Liu, X., Sheng, H., et al. (2023) A Demonstration Based on Multi-Omics Transcriptome Sequencing Data Revealed Disulfidptosis Heterogeneity within the Tumor Microenvironment of Esophageal Squamous Cell Carcinoma. Discover Oncology, 14, Article No. 96.
https://doi.org/10.1007/s12672-023-00711-5
[12]  Goldman, M.J., Craft, B., Hastie, M., Repečka, K., McDade, F., Kamath, A., et al. (2020) Visualizing and Interpreting Cancer Genomics Data via the Xena Platform. Nature Biotechnology, 38, 675-678.
https://doi.org/10.1038/s41587-020-0546-8
[13]  Chen, J., Zhang, J., Gao, Y., Li, Y., Feng, C., Song, C., et al. (2020) LncSEA: A Platform for Long Non-Coding RNA Related Sets and Enrichment Analysis. Nucleic Acids Research, 49, D969-D980.
https://doi.org/10.1093/nar/gkaa806
[14]  Tibshirani, R. (1997) The Lasso Method for Variable Selection in the Cox Model. Statistics in Medicine, 16, 385-395.
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3
[15]  Therneau, T.M. and Lumley, T. (2015) Package “Survival”.
https://github.com/therneau/survival
[16]  Li, S., Zhang, H., Liu, J. and Shang, G. (2023) Targeted Therapy for Osteosarcoma: A Review. Journal of Cancer Research and Clinical Oncology, 149, 6785-6797.
https://doi.org/10.1007/s00432-023-04614-4
[17]  Liu, S., Wang, S., Guo, J., Wang, C., Zhang, H., Lin, D., et al. (2024) Crosstalk among Disulfidptosis-Related LncRNAs in Lung Adenocarcinoma Reveals a Correlation with Immune Profile and Clinical Prognosis. Non-Coding RNA Research, 9, 772-781.
https://doi.org/10.1016/j.ncrna.2024.03.006
[18]  Wang, Y., Deng, Y., Xie, H. and Cao, S. (2023) Hub Gene of Disulfidptosis-Related Immune Checkpoints in Breast Cancer. Medical Oncology, 40, Article No. 222.
https://doi.org/10.1007/s12032-023-02073-y
[19]  Xue, W., Qiu, K., Dong, B., Guo, D., Fu, J., Zhu, C., et al. (2023) Disulfidptosis-Associated Long Non-Coding RNA Signature Predicts the Prognosis, Tumor Microenvironment, and Immunotherapy and Chemotherapy Options in Colon Adenocarcinoma. Cancer Cell International, 23, Article No. 218.
https://doi.org/10.1186/s12935-023-03065-8
[20]  Liu, L., Liu, J., Lyu, Q., Huang, J., Chen, Y., Feng, C., et al. (2023) Disulfidptosis-Associated LncRNAs Index Predicts Prognosis and Chemotherapy Drugs Sensitivity in Cervical Cancer. Scientific Reports, 13, Article No. 12470.
https://doi.org/10.1038/s41598-023-39669-3
[21]  Xiao, L., Yin, W., Chen, X., Zhang, X., Zhang, C., Yu, Z., et al. (2023) A Disulfidptosis-Related LncRNA Index Predicting Prognosis and the Tumor Microenvironment in Colorectal Cancer. Scientific Reports, 13, Article No. 20135.
https://doi.org/10.1038/s41598-023-47472-3
[22]  Zhang, H., Pan, J. and Zhu, T. (2023) A disulfidptosis-Related LncRNA Prognostic Model to Predict Survival and Response to Immunotherapy in Lung Adenocarcinoma. Frontiers in Pharmacology, 14, Article 1254119.
https://doi.org/10.3389/fphar.2023.1254119
[23]  Deng, Y., Yuan, W., Ren, E., Wu, Z., Zhang, G. and Xie, Q. (2021) A Four-Methylated LncRNA Signature Predicts Survival of Osteosarcoma Patients Based on Machine Learning. Genomics, 113, 785-794.
https://doi.org/10.1016/j.ygeno.2020.10.010
[24]  Yu, M., Shi, C., Xu, D., Lin, X., Ji, T., Shi, Z., et al. (2021) LncRNA ASB16-AS1 Drives Proliferation, Migration, and Invasion of Colorectal Cancer Cells through Regulating miR-185-5p/TEAD1 Axis. Cell Cycle, 21, 1-11.
https://doi.org/10.1080/15384101.2021.1973700
[25]  Fan, Y., Wang, L., Han, X., Ma, H., Zhang, N. and She, L. (2023) LncRNA ASB16-AS1 Accelerates Cellular Process and Chemoresistance of Ovarian Cancer Cells by Regulating GOLM1 Expression via Targeting miR-3918. Biochemical and Biophysical Research Communications, 675, 1-9.
https://doi.org/10.1016/j.bbrc.2023.06.068
[26]  Jia, Z., Wang, P.S., Yang, Y., et al. (2021) LncRNA ASB16-AS1 Regulates the Proliferation, Migration and Invasion of Esophageal Cancer Cells by Targeting miR-1258. Chinese Journal of Oncology, 43, 762-768.
[27]  Wu, L., Liao, W., Wang, X., Zhao, Y., Pang, J., Chen, Y., et al. (2021) Expression, Prognosis Value, and Immune Infiltration of LncRNA ASB16-AS1 Identified by Pan-Cancer Analysis. Bioengineered, 12, 10302-10318.
https://doi.org/10.1080/21655979.2021.1996054
[28]  Zhang, J. and Lou, W. (2020) A Key mRNA-miRNA-LncRNA Competing Endogenous RNA Triple Sub-Network Linked to Diagnosis and Prognosis of Hepatocellular Carcinoma. Frontiers in Oncology, 10, Article 340.
https://doi.org/10.3389/fonc.2020.00340
[29]  Zhang, D., Zhou, H., Liu, J. and Mao, J. (2019) Long Noncoding RNA ASB16-AS1 Promotes Proliferation, Migration, and Invasion in Glioma Cells. BioMed Research International, 2019, Article ID: 5437531.
https://doi.org/10.1155/2019/5437531
[30]  Elabd, N.S., Soliman, S.E., Elhamouly, M.S., Gohar, S.F., Elgamal, A., Alabassy, M.M., et al. (2022) Long Non-Coding RNAs ASB16-AS1 and AFAP1-AS1: Diagnostic, Prognostic Impact and Survival Analysis in Colorectal Cancer. The Application of Clinical Genetics, 15, 97-109.
https://doi.org/10.2147/tacg.s370242

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133