全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

慢化剂氢化锆与氢化钇参数对TOPAZ-II反应堆功率分布的影响研究
Study on the Effects of Zirconium Hydride and Yttrium Hydride Parameters on TOPAZ-II Reactor Power Distribution

DOI: 10.12677/nst.2024.124030, PP. 304-315

Keywords: 氢化锆,氢化钇,功率分布,空间堆,MCNP
Zirconium Hydride
, Yttrium Hydride, Power Distribution, Space Reactor, MCNP

Full-Text   Cite this paper   Add to My Lib

Abstract:

TOPAZ-II反应堆是使用固体金属氢化物为慢化剂的微型空间堆,常用的慢化剂材料是氢化锆。近年来,由于金属钇的制造成本降低,氢化钇逐渐成为TOPAZ-II反应堆慢化剂材料的新选择。使用MCNP程序对TOPAZ-II反应堆进行功率分布计算,分别研究氢化锆和氢化钇在不同条件下对反应堆功率的影响。计算结果表明:改变金属氢化物慢化剂的氢含量和温度参数时,堆芯径向功率峰因子的变化趋势决定了功率不均匀系数的变化趋势;慢化剂的氢含量和温度参数的改变会导致堆芯热中子分布发生变化,进而影响反应堆功率分布,低能热中子占中子群份额越高,堆芯径向功率峰因子越小;慢化剂周围的CO2气体环境导致氢损失速率较小,对反应堆功率分布的影响很小;两种慢化剂呈正温度效应,氢化钇的温度系数比氢化锆的温度系数小,且以氢化钇为慢化剂的反应堆keff更高。
The TOPAZ-II reactor is a micro-space reactor that uses solid metal hydride as the moderator, with zirconium hydride being the commonly used moderator material. In recent years, the reduced manufacturing cost of yttrium has led to yttrium hydride gradually becoming a new choice of moderator material for the TOPAZ-II reactor. The MCNP program was used to calculate the power distribution of the TOPAZ-II reactor and research the influence of zirconium hydride and yttrium hydride on the reactor power under different conditions. The calculation results show that the trend of the variation in radial power peak factor determines the trend of the variation in power inhomogeneous coefficient when changing the hydrogen content and temperature parameters of the metal hydride moderator. Changes in hydrogen content and temperature parameters of the moderator can cause changes in the thermal neutron distribution in the core, thereby affecting the reactor power distribution. The higher the proportion of low-energy thermal neutrons in the neutron group, the smaller the radial power peak factor in reaction core. The CO2 gas environment surrounding the moderator causes a lower rate of hydrogen loss, resulting in minimal impact on the reactor power distribution. Both moderators exhibit positive temperature effects, with the temperature coefficient of hydrogenated yttrium being smaller than that of hydrogenated zirconium, and the keff of the reactor with hydrogenated yttrium as the moderator is higher.

References

[1]  Voss, S.S. (1994) TOPAZ II System Description. Los Alamos National Lab.
[2]  Chapman, C.W., Ramic, K., Hu, X., et al. (2020) Thermal Neutron Scattering Evaluation of Yttrium Hydride (FY2020 Progress). Oak Ridge National Lab (ORNL).
[3]  Hu, X., Schappel, D., Silva, C.M. and Terrani, K.A. (2020) Fabrication of Yttrium Hydride for High-Temperature Moderator Application. Journal of Nuclear Materials, 539, Article ID: 152335.
https://doi.org/10.1016/j.jnucmat.2020.152335
[4]  谢仲生, 曹良志, 张少泓. 核反应堆物理分析[M]. 西安: 西安交通大学出版社, 2020: 86, 222.
[5]  El-Genk, M.S., Paramonov, D.V., Xue, H., Ogloblin, B.G. and Shumov, D.P. (1995) A Topaz-II Bimodal Design Assessment Study and System Analysis. AIP Conference Proceedings, 324, 827-836.
https://doi.org/10.1063/1.47122
[6]  El-Genk, M.S. and Xue, H. (1992) Transient and Steady-State Analyses of an Electrically Heated Topaz-II Thermionic Fuel Element. 27th Intersociety Energy Conversion Engineering Conference, San Diego, 3-7 August 1992, SAE Technical Paper 929239.
https://doi.org/10.4271/929239
[7]  彭红花, 严睿, 朱贵凤, 等. MCNP5在固态燃料熔盐堆功率分布计算的应用[J]. 强激光与粒子束, 2018, 30(1): 138-143.
[8]  Kulesza, J.A., Terry, R., et al. (2022) MCNP® Code Version 6.3.0 Theory & User Manual. LA-UR-22-30006, Los Alamos National Laboratory.
[9]  Snoj, L. and Ravnik, M. (2006) Calculation of Power Density with MCNP in TRIGA Reactor. International Conference Nuclear Energy for New Europe, Portorož, 18-21 September 2006, 109.1-109.6.
[10]  王武, 夏虹, 李伟, 等. 基于MCNP的反应堆建模方法[J]. 应用科技, 2021, 48(4): 92-97.
[11]  解家春, 赵守智, 贾宝山, 等. TOPAZ-II反应堆慢化剂温度效应分析[J]. 原子能科学技术, 2011, 45(1): 48-53.
[12]  Mehta, V.K., Cooper, M.W.D., Wilkerson, R.B., Kotlyar, D., Rao, D.V. and Vogel, S.C. (2021) Evaluation of Yttrium Hydride (δ-Yh2x) Thermal Neutron Scattering Laws and Thermophysical Properties. Nuclear Science and Engineering, 195, 563-577.
https://doi.org/10.1080/00295639.2020.1851632
[13]  Qi, S., Ma, Z., Yan, G., Wang, Z. and Wang, L. (2021) Hydrogen Permeation Rate of Coating Zirconium Hydride Moderator—A Prediction Model. International Journal of Energy Research, 45, 14710-14719.
https://doi.org/10.1002/er.6748
[14]  王智辉. 钇锆合金氢化物成分设计与吸氢性能研究[D]: [博士学位论文]. 北京: 北京科技大学, 2021.
[15]  时运达, 孙征, 杨睿, 等. TOPAZ-II反应堆慢化剂正温度效应研究[J]. 原子能科学技术, 2023, 57(3): 583-590.
[16]  刘黎丽. SPACE-R反应堆径向功率分布优化方案研究[J]. 科技创新导报, 2015(35): 176-178.
[17]  孙征. TOPAZ-II的三维中子注量率和功率密度分布计算[C]//第十一届反应堆数值计算和粒子输运学术会议暨2006年反应堆物理会议论文集. 2006: 308-315.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133