|
基因检测与尿液分析确诊的轻型乙基丙二酸脑病2例
|
Abstract:
目的:本研究旨在探讨ETHE1基因突变c.586G>A引起的乙基丙二酸脑病(EE)的临床表现、影像学、基因突变特性、诊断方法、治疗策略及预后。方法:收集并分析两例确诊携带ETHE1基因突变c.586G>A的EE家系的详尽临床资料,结合文献复习,总结其临床和遗传学特点。结果:先证者是一名22岁的男性,携带ETHE1基因的c.586G>A纯合突变,其父母均为该基因突变的杂合携带者,且确认为近亲结婚。其弟弟也同样携带该基因的纯合突变。通过基因检测和尿液分析,我们成功确诊了该疾病。结论:确认ETHE1基因突变c.586G>A与EE的直接联系。基因检测为EE的诊断和治疗提供宝贵的辅助信息,同时明确近亲结婚的遗传影响以及家系中EE的遗传易感性,对于早期识别、适当管理和家族遗传咨询至关重要。
Objective: This study aims to explore the clinical manifestations, imaging findings, genetic mutation characteristics, diagnostic methods, treatment strategies, and prognosis of ethylmalonic encephalopathy (EE) caused by the c.586G>A mutation in the ETHE1 gene. Methods: Detailed clinical data from two confirmed familial cases of EE carrying the c.586G>A mutation in the ETHE1 gene were collected and analyzed. A comprehensive review of the literature was conducted to summarize the clinical and genetic features. Results: The proband is a 22-year-old male with a homozygous c.586G>A mutation in the ETHE1 gene, with both parents being heterozygous carriers of the mutation, confirmed as consanguineous. His younger brother also carries the same homozygous mutation. The disease was successfully diagnosed through genetic testing and urine analysis. Conclusion: The c.586G>A mutation in the ETHE1 gene is directly linked to EE. Genetic testing provides valuable support for the diagnosis and treatment of EE. Furthermore, the study underscores the genetic implications of consanguineous marriages and the hereditary susceptibility to EE within the family, which is crucial for early identification, proper management, and genetic counseling.
[1] | Sathe, G., Deepha, S., Gayathri, N., Nagappa, M., Parayil Sankaran, B., Taly, A.B., et al. (2021) Ethylmalonic Encephalopathy ETHE1 p. D165H Mutation Alters the Mitochondrial Function in Human Skeletal Muscle Proteome. Mitochondrion, 58, 64-71. https://doi.org/10.1016/j.mito.2021.02.011 |
[2] | Mineri, R., Rimoldi, M., Burlina, A.B., Koskull, S., Perletti, C., Heese, B., et al. (2008) Identification of New Mutations in the ETHE1 Gene in a Cohort of 14 Patients Presenting with Ethylmalonic Encephalopathy. Journal of Medical Genetics, 45, 473-478. https://doi.org/10.1136/jmg.2008.058271 |
[3] | Platt, I., Bisgin, A. and Kilavuz, S. (2023) Ethylmalonic Encephalopathy: A Literature Review and Two New Cases of Mild Phenotype. Neurological Sciences, 44, 3827-3852. https://doi.org/10.1007/s10072-023-06904-8 |
[4] | García-Silva, M.T., Ribes, A., Campos, Y., Garavaglia, B. and Arenas, J. (1997) Syndrome of Encephalopathy, Petechiae, and Ethylmalonic Aciduria. Pediatric Neurology, 17, 165-170. https://doi.org/10.1016/s0887-8994(97)00048-9 |
[5] | Kabil, O. and Banerjee, R. (2012) Characterization of Patient Mutations in Human Persulfide Dioxygenase (ETHE1) Involved in H2S Catabolism. Journal of Biological Chemistry, 287, 44561-44567. https://doi.org/10.1074/jbc.m112.407411 |
[6] | Amaral, A.U., Cecatto, C., Busanello, E.N.B., Ribeiro, C.A.J., Melo, D.R., Leipnitz, G., et al. (2012) Ethylmalonic Acid Impairs Brain Mitochondrial Succinate and Malate Transport. Molecular Genetics and Metabolism, 105, 84-90. https://doi.org/10.1016/j.ymgme.2011.10.006 |
[7] | Grings, M., Wajner, M. and Leipnitz, G. (2020) Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies. Cellular and Molecular Neurobiology, 42, 565-575. https://doi.org/10.1007/s10571-020-00976-2 |
[8] | Sahebekhtiari, N., Fernandez-Guerra, P., Nochi, Z., Carlsen, J., Bross, P. and Palmfeldt, J. (2019) Deficiency of the Mitochondrial Sulfide Regulator ETHE1 Disturbs Cell Growth, Glutathione Level and Causes Proteome Alterations Outside Mitochondria. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1865, 126-135. https://doi.org/10.1016/j.bbadis.2018.10.035 |
[9] | Ritter, L., Kleemann, D., Hickmann, F.H., Amaral, A.U., Sitta, Â., Wajner, M., et al. (2015) Disturbance of Energy and Redox Homeostasis and Reduction of Na+, K+-ATPase Activity Provoked by in Vivo Intracerebral Administration of Ethylmalonic Acid to Young Rats. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1852, 759-767. https://doi.org/10.1016/j.bbadis.2015.01.003 |
[10] | Bhat, M.D., Prasad, C., Tiwari, S., Chandra, S.R. and Christopher, R. (2016) Diffusion Restriction in Ethylmalonic Encephalopathy—An Imaging Evidence of the Pathophysiology of the Disease. Brain and Development, 38, 768-771. https://doi.org/10.1016/j.braindev.2016.02.014 |
[11] | Giordano, C., Viscomi, C., Orlandi, M., Papoff, P., Spalice, A., Burlina, A., et al. (2011) Morphologic Evidence of Diffuse Vascular Damage in Human and in the Experimental Model of Ethylmalonic Encephalopathy. Journal of Inherited Metabolic Disease, 35, 451-458. https://doi.org/10.1007/s10545-011-9408-3 |
[12] | Dionisi-Vici, C., Diodato, D., Torre, G., Picca, S., Pariante, R., Giuseppe Picardo, S., et al. (2016) Liver Transplant in Ethylmalonic Encephalopathy: A New Treatment for an Otherwise Fatal Disease. Brain, 139, 1045-1051. https://doi.org/10.1093/brain/aww013 |
[13] | Cooper, C.E. and Brown, G.C. (2008) The Inhibition of Mitochondrial Cytochrome Oxidase by the Gases Carbon Monoxide, Nitric Oxide, Hydrogen Cyanide and Hydrogen Sulfide: Chemical Mechanism and Physiological Significance. Journal of Bioenergetics and Biomembranes, 40, 533-539. https://doi.org/10.1007/s10863-008-9166-6 |
[14] | Tiranti, V. (2005) ETHE1 Mutations Are Specific to Ethylmalonic Encephalopathy. Journal of Medical Genetics, 43, 340-346. https://doi.org/10.1136/jmg.2005.036210 |
[15] | Tam, A., AlDhaheri, N.S., Mysore, K., Tessier, M.E., Goss, J., Fernandez, L.A., et al. (2019) Improved Clinical Outcome Following Liver Transplant in Patients with Ethylmalonic Encephalopathy. American Journal of Medical Genetics Part A, 179, 1015-1019. https://doi.org/10.1002/ajmg.a.61104 |
[16] | 张开慧, 黄艳, 盖中涛, 等. 一例非典型乙基丙二酸脑病患儿的临床及遗传学分析[J]. 中华医学遗传学杂志, 2018, 35(5): 694-698. |
[17] | Tiranti, V., Viscomi, C., Hildebrandt, T., Di Meo, I., Mineri, R., Tiveron, C., et al. (2009) Loss of ETHE1, a Mitochondrial Dioxygenase, Causes Fatal Sulfide Toxicity in Ethylmalonic Encephalopathy. Nature Medicine, 15, 200-205. https://doi.org/10.1038/nm.1907 |
[18] | Di Meo, I., Fagiolari, G., Prelle, A., Viscomi, C., Zeviani, M. and Tiranti, V. (2011) Chronic Exposure to Sulfide Causes Accelerated Degradation of Cytochrome C Oxidase in Ethylmalonic Encephalopathy. Antioxidants & Redox Signaling, 15, 353-362. https://doi.org/10.1089/ars.2010.3520 |