|
基于GCC-KNN算法的病人糖尿病遗传分类预测方法
|
Abstract:
糖尿病是世界上常见的慢性病,及时查验和治疗非常有必要。在目前数字化背景下,将机器学习与医疗安全相结合具有重要意义。针对医院检查人群中潜在糖尿病病人遗传分类识别进行研究。由于糖尿病病人分类识别的特征值较多且密集,且本文主要的需求是保证其识别的准确率,故在KNN算法的基础上进行改进,使用了改进的GCC-KNN模型来对其进行分类识别,通过网格搜索优化算法确定了K值的最优参数,以及将不同距离进行对比,选择了该模型的最优距离切比雪夫距离,实现了医院检查人群中潜在糖尿病病人遗传的初步划分。经过实验对比,GCC-KNN模型准确率在潜在糖尿病病人遗传分类识别中均优于其他对比模型。
Diabetes is a common chronic disease in the world, so it is necessary to check and treat it in time. In the current digital context, combining machine learning with medical security is of great significance. The genetic classification and identification of potential diabetes patients in the hospital inspection population were studied. Because the feature values for classification and recognition of diabetes patients are more and more intensive, and the main demand of this paper is to ensure the accuracy of their recognition, it is improved on the basis of the KNN algorithm, using the improved GCC-KNN model to classify and recognize them, determining the optimal parameters of K value through the grid search optimization algorithm, and comparing different distances, selecting the optimal distance Chebyshev distance of this model, realizing the preliminary division of the genetics of potential diabetes patients in the hospital inspection population. Through experimental comparison, the accuracy of GCC-KNN model is superior to other comparison models in genetic classification and recognition of potential diabetes patients.
[1] | 心怡, 张永泽, 阳成虎, 等. 数字健康背景下糖尿病基层医防融合服务的需求研究[J]. 中国全科医学, 2024, 27(31): 3958-3965. |
[2] | 刘巧红, 马雨生, 蔡雨晨. 基于XGBoost算法的糖尿病分类预测模型及应用[J]. 现代仪器与医疗, 2023, 29(4): 1-6+11. |
[3] | 胡月. 基于Stacking集成学习的糖尿病风险预测研究[D]: [硕士学位论文]. 哈尔滨: 黑龙江大学, 2024. |
[4] | 凌雄娟, 王俊杰. 基于机器学习算法的糖尿病预测[J]. 现代信息科技, 2024, 8(14): 59-63+68. |
[5] | 薛博元. 基于改进CatBoost算法的糖尿病回归和分类预测模型研究[D]: [硕士学位论文]. 银川: 北方民族大学, 2024. |
[6] | Nalini, M., Yamini, B., Fernandez, F.M.H. and Uma Priyadarsini, P.S. (2024) Enhancing Anomaly Detection Efficiency: Introducing Grid Searchbased Multi-Population Particle Swarm Optimization Algorithm Based Optimized Regional Based Convolutional Neural Network for Robust and Scalable Solutions in High-Dimensional Data. Biomedical Signal Processing and Control, 96, Article ID: 106651. https://doi.org/10.1016/j.bspc.2024.106651 |
[7] | 王紫薇, 徐凯, 侯益明. 基于不同距离公式的KNN算法对鸢尾花的分类[J]. 无线互联科技, 2021, 18(13): 105-106. |